国产精品色无码视频,国产av毛片影院精品资源,亚洲人成网站77777·c0m,囯产av无码片毛片一级,夜夜操www99视频,美女白嫩胸交在线观看,亚洲a毛片性生活

薈聚奇文、博采眾長(zhǎng)、見賢思齊
當(dāng)前位置:公文素材庫(kù) > 公文素材 > 范文素材 > 八年級(jí)上冊(cè)期中考試知識(shí)點(diǎn)歸納(北師大版)

八年級(jí)上冊(cè)期中考試知識(shí)點(diǎn)歸納(北師大版)

網(wǎng)站:公文素材庫(kù) | 時(shí)間:2019-05-29 07:25:23 | 移動(dòng)端:八年級(jí)上冊(cè)期中考試知識(shí)點(diǎn)歸納(北師大版)

八年級(jí)上冊(cè)期中考試知識(shí)點(diǎn)歸納(北師大版)

北師大版《數(shù)學(xué)》(八年級(jí)上冊(cè))知識(shí)點(diǎn)總結(jié)

第一章勾股定理

1、勾股定理

(1)直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2b2c2根據(jù)勾股定理可求AC,只要求出EC即可。解:在Rt△ACB中,AC2=AB2-BC2=2.52-1.52=4,∴AC=2

∵BD=0.5,∴CD=2

222.2222.25在RtECD中,ECEDCD25∴EC=1.5

(2)勾股定理的驗(yàn)證:測(cè)量、數(shù)格子、拼圖法、面積法,如青朱出入圖、五巧板、玄圖、總統(tǒng)證法(通過面積的不同表示方法得到驗(yàn)證,也叫等面積法或等積法)

(3)勾股定理的適用范圍:盡限于直角三角形2、勾股定理的逆定理

AEACEC215.05.

答:梯子頂端下滑了0.5米。點(diǎn)撥:要考慮梯子的長(zhǎng)度不變。

例5.如圖所示的一塊地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,算術(shù)平方根定義如果一個(gè)非負(fù)數(shù)x的平方等于a,即x2a那么這個(gè)非負(fù)數(shù)x就叫做a的算術(shù)平方根,記為a,算術(shù)平方根為非負(fù)數(shù)a0正數(shù)的平方根有2個(gè),它們互為相反數(shù)平方根0的平方根是0負(fù)數(shù)沒有平方根2.無(wú)理數(shù)的表示定義:如果一個(gè)數(shù)的平方等于a,即x2a,那么這個(gè)數(shù)就叫做a的平方根,記為a正數(shù)的立方根是正數(shù)立方根負(fù)數(shù)的立方根是負(fù)數(shù)0的立方根是0如果三角形的三邊長(zhǎng)a,b,c有關(guān)系a2b2c2,那么這個(gè)三角形是直角三角形。3、勾股數(shù):滿足a2b2c2的三個(gè)正整數(shù)a,b,c,稱為勾股數(shù)。常見的勾股數(shù)有:(6,8,10)(3,4,5)(5,12,,13)(9,12,15)(7,24,25)(9,40,41)

規(guī)律:(1),短直角邊為奇數(shù),另一條直角邊與斜邊是兩個(gè)連續(xù)的自然數(shù),兩邊之和是短直角邊的平方。即當(dāng)a為奇數(shù)且a<b時(shí),如果b+c=a2

那么a,b,c就是一組勾股數(shù).如(3,4,5)(5,12,,13)(7,24,25)(9,40,41)

(2)大于2的任意偶數(shù),2n(n>1)都可構(gòu)成一組勾股數(shù)分別是:2n,n2

-1,n2

+1如:(6,8,10)(8,15,17)(10,24,26)4、常見題型應(yīng)用:

(1)已知任意兩條邊的長(zhǎng)度,求第三邊/斜邊上的高線/周長(zhǎng)/面積(2)已知任意一條的邊長(zhǎng)以及另外兩條邊長(zhǎng)之間的關(guān)系,求各邊的長(zhǎng)度//斜邊上的高線/周長(zhǎng)/面積

(3)判定三角形形狀:a2

+b2

>c2

銳角~,a2

+b2

=c2

直角~,a2

+b2

<c2

鈍角~

判定直角三角形a..找最長(zhǎng)邊;b.比較長(zhǎng)邊的平方與另外兩條較短邊的平方和之間

的大小關(guān)系;c.確定形狀

(4)構(gòu)建直角三角形解題

例1.已知直角三角形的兩直角邊之比為3:4,斜邊為10。求直角三角形的兩直角邊。

解:設(shè)兩直角邊為3x,4x,由題意知:

(3x)2(4x)2100,9x216x2100,25x2100,x24

∴x=2,則3x=6,4x=8,故兩直角邊為6,8。中考突破

(1)中考典題

例.如圖(1)所示,一個(gè)梯子AB長(zhǎng)2.5米,頂端A靠在墻AC上,這時(shí)梯子下端B與墻角C距離為1.5米,梯子滑動(dòng)后停在DE位置上,如圖(2)所示,測(cè)得得BD=0.5米,求梯子頂端A下落了多少米?

AAECBCBD(1)(2)

思維入門指導(dǎo):梯子頂端A下落的距離為AE,即求AE的長(zhǎng)。已知AB和BC,

求這塊地的面積。

ADCB

思維入門指導(dǎo):求面積時(shí)一般要把不規(guī)則圖形分割成規(guī)則圖形,若連結(jié)BD,似乎不得要領(lǐng),連結(jié)AC,求出SABCSACD即可。

解:連結(jié)AC,在Rt△ADC中,

ADCB

AC2CD2AD212292225AC15

在△ABC中,AB2=1521AC2BC21523621521

AB2AC2BC2,ACB90°

SABCSACD12ACBC12ADCD

1

1536112927054216(m222)

答:這塊地的面積是216平方米。

點(diǎn)撥:此題綜合地應(yīng)用了勾股定理和直角三角形判定條件。

第二章實(shí)數(shù)

基本知識(shí)回顧

1.無(wú)理數(shù)的引入。無(wú)理數(shù)的定義無(wú)限不循環(huán)小數(shù)。

第1頁(yè)共4頁(yè)

定義:如果一個(gè)數(shù)x的立方等于a,即x3a,那么這個(gè)數(shù)x就叫做a的立方根,記為3a.

概念有理數(shù)和無(wú)理數(shù)統(tǒng)稱實(shí)數(shù)分類有理數(shù)正數(shù)無(wú)理數(shù)或03.實(shí)數(shù)及其相關(guān)概念負(fù)數(shù)絕對(duì)值、相反數(shù)、倒數(shù)的意義同有理數(shù)實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)實(shí)數(shù)的運(yùn)算法則、運(yùn)算規(guī)律與有理數(shù)的運(yùn)算法則運(yùn)算規(guī)律相同。

一、實(shí)數(shù)的概念及分類

1、實(shí)數(shù)的分類

正有理數(shù)

有理數(shù)零有限小數(shù)和無(wú)限循環(huán)小數(shù)實(shí)數(shù)負(fù)有理數(shù)

正無(wú)理數(shù)

無(wú)理數(shù)無(wú)限不循環(huán)小數(shù)負(fù)無(wú)理數(shù)

2、無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫做無(wú)理數(shù)。

在理解無(wú)理數(shù)時(shí),要抓住“無(wú)限不循環(huán)”這一時(shí)之,歸納起來(lái)有四類:(1)開方開不盡的數(shù),如7,32等;

(2)有特定意義的數(shù),如圓周率π,或化簡(jiǎn)后含有π的數(shù),如π/3+8等;(3)有一定規(guī)律,但并不循環(huán)的數(shù),如0.1010010001等;(4)某些三角函數(shù)值,如sin60o等二、實(shí)數(shù)的倒數(shù)、相反數(shù)和絕對(duì)值

1、相反數(shù)

實(shí)數(shù)與它的相反數(shù)時(shí)一對(duì)數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱,如果a與b互為相反數(shù),則有a+b=0,a=b,反之亦成立。

2、絕對(duì)值

在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對(duì)值。(|a|≥0)。零的絕對(duì)值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。3、倒數(shù)

如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

4、數(shù)軸

規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸(畫數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可)。

解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對(duì)應(yīng)的,并能靈活運(yùn)用。

5、估算

利用非負(fù)數(shù)解題的常見類型例1.

已知x5|y3|0,求x22y的值。

解:x50,|y3|0,且x5|y3|0x50,|y3|0x50,y30

x5,y3

x22y25619

點(diǎn)撥:利用算術(shù)平方根,絕對(duì)值非負(fù)性解題。

三、平方根、算數(shù)平方根和立方根

1、算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方根。特別地,0的算術(shù)平方根是0。

表示方法:記作“a”,讀作根號(hào)a。

性質(zhì):正數(shù)和零的算術(shù)平方根都只有一個(gè),零的算術(shù)平方根是零。2、平方根:一般地,如果一個(gè)數(shù)x的平方等于a,即x2

=a,那么這個(gè)數(shù)x就叫做a的平方根(或二次方根)。

表示方法:正數(shù)a的平方根記做“a”,讀作“正、負(fù)根號(hào)a”。

性質(zhì):一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒有平方根。

開平方:求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開平方。注意a的雙重非負(fù)性:被開方數(shù)與結(jié)果均為非負(fù)數(shù)。即a≥0,3、立方根

一般地,如果一個(gè)數(shù)x的立方等于a,即x3=a那么這個(gè)數(shù)x就叫做a的立方根(或三次方根)。

表示方法:記作3a

性質(zhì):一個(gè)正數(shù)有一個(gè)正的立方根;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根;零的立方根是零。

注意:3a3a,這說(shuō)明三次根號(hào)內(nèi)的負(fù)號(hào)可以移到根號(hào)外面。四、實(shí)數(shù)大小的比較

1、實(shí)數(shù)比較大。赫龜(shù)大于零,負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù);數(shù)軸上的兩個(gè)點(diǎn)所表示的數(shù),右邊的總比左邊的大;兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。

2、實(shí)數(shù)大小比較的幾種常用方法

(1)數(shù)軸比較:在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大。(2)求差比較:設(shè)a、b是實(shí)數(shù),

ab0ab,

ab0ab,

ab0ab

(3)求商比較法:設(shè)a、b是兩正實(shí)數(shù),

ab1ab;ab1ab;ab1ab;(4)絕對(duì)值比較法:設(shè)a、b是兩負(fù)實(shí)數(shù),則abab。

(5)平方法:設(shè)a、b是兩負(fù)實(shí)數(shù),則a2b2ab。

(6)倒數(shù)法:設(shè)a、b是同正,如果1/a>1/b,則a<b;同負(fù),如果1/a>1/b,則a>b

五、算術(shù)平方根有關(guān)計(jì)算(二次根式)

1、含有二次根號(hào)“”;被開方數(shù)a必須是非負(fù)數(shù)。

2、性質(zhì):

(1)(a)2a(a0)(2)a2aa(a0)a(a0)

(3)abab(a0,b0)(abab(a0,b0))(4)abab(a0,b0)(abab(a0,b0))

3、運(yùn)算結(jié)果若含有“a”形式,必須滿足:(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式六、實(shí)數(shù)的運(yùn)算

(1)六種運(yùn)算:加、減、乘、除、乘方、開方(2)實(shí)數(shù)的運(yùn)算順序

先算乘方和開方,再算乘除,最后算加減,如果有括號(hào),就先算括號(hào)里面的。(3)運(yùn)算律

加法交換律abba

加法結(jié)合律(ab)ca(bc)乘法交換律abba乘法結(jié)合律(ab)ca(bc)乘法對(duì)加法的分配律a(bc)abac

例.計(jì)算:

(1)2121;

(2)3232;

(3)2323;

(4)5252.

第2頁(yè)共4頁(yè)

通過以上計(jì)算,觀察規(guī)律,寫出用n(n為正整數(shù))表示上面規(guī)律的等式___________。

22解:211;3221;4321;5241

規(guī)律:

n1nn1n1

第三章圖形的平移與旋轉(zhuǎn)

一、平移

1、定義:在平面內(nèi),將一個(gè)圖形整體沿某方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移。

2、要素(或條件):方向,即前后對(duì)應(yīng)點(diǎn)的射線方向;距離,即對(duì)應(yīng)點(diǎn)之間的距離

3、性質(zhì):平移前后兩個(gè)圖形的形狀和大小不變(即全等圖形),對(duì)應(yīng)點(diǎn)連線平行(或在同一條直線上)且相等,對(duì)應(yīng)線段平行(或在同一條直線上)且相等,對(duì)應(yīng)角相等。4、平移作圖:

線段的平移作法:

作法1:將線段兩端點(diǎn)分別平移,然后將兩個(gè)平移后的點(diǎn)連成線段,即為原線段平移后的線段;

作法2:將線段一端點(diǎn)平移,然后過平移后的點(diǎn)作原線段的平行線,在該平行線適當(dāng)方向截取長(zhǎng)度為指定線段長(zhǎng)度,則所得線段為所求.

二、旋轉(zhuǎn)

1、定義:在平面內(nèi),將一個(gè)圖形繞某一定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn),這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角。

2、要素(或條件):旋轉(zhuǎn)中心(定點(diǎn))、旋轉(zhuǎn)方向(順時(shí)針/逆時(shí)針)、旋轉(zhuǎn)角度(0~3600)

3、性質(zhì):旋轉(zhuǎn)前后兩個(gè)圖形是全等圖形,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角等于旋轉(zhuǎn)角。4、旋轉(zhuǎn)作圖:

(1)作圖步驟:觀察基本圖案(確定關(guān)鍵點(diǎn))確定旋轉(zhuǎn)的三要素找到對(duì)應(yīng)點(diǎn)連接對(duì)應(yīng)點(diǎn)作答

(2)旋轉(zhuǎn)作圖的方法:1、把各關(guān)鍵點(diǎn)依次與旋轉(zhuǎn)中心連接2、按要求向順時(shí)針/逆時(shí)針旋轉(zhuǎn)相應(yīng)角度3、截取對(duì)應(yīng)線段4、連接對(duì)應(yīng)點(diǎn)

5、作答

三、簡(jiǎn)單的圖案設(shè)計(jì):

第四章四邊形性質(zhì)探索

一、四邊形的相關(guān)概念

1、四邊形:在同一平面內(nèi),由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。

2、四邊形具有不穩(wěn)定性

3、四邊形的內(nèi)角和定理及外角和定理

四邊形的內(nèi)角和定理:四邊形的內(nèi)角和等于360°。四邊形的外角和定理:四邊形的外角和等于360°。

推論:多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)*180°;多邊形的外角和定理:任意多邊形的外角和等于360°。6、設(shè)多邊形的邊數(shù)為n,從n邊形的一個(gè)頂點(diǎn)出發(fā)能引(n-3)條對(duì)角線,將n邊形分成(n-2)個(gè)三角形。多邊形的對(duì)角線共有n(n3)條。

2二、平行四邊形1、平行四邊形的定義

兩組對(duì)邊分別平行的四邊形叫做平行四邊形。2、平行四邊形的性質(zhì)

(1)平行四邊形的對(duì)邊平行且相等。(2)平行四邊形相鄰的角互補(bǔ),對(duì)角相等(3)平行四邊形的對(duì)角線互相平分。

(4)平行四邊形是中心對(duì)稱圖形,對(duì)稱中心是對(duì)角線的交點(diǎn)。常用點(diǎn):(1)若一直線過平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段的中點(diǎn)是對(duì)角線的交點(diǎn),并且這條直線二等分此平行四邊形的面積。

(2)推論:夾在兩條平行線間的平行線段相等。3、平行四邊形的判定

(1)定義:兩組對(duì)邊分別平行的四邊形是平行四邊形(2)定理1:兩組對(duì)角分別相等的四邊形是平行四邊形(3)定理2:兩組對(duì)邊分別相等的四邊形是平行四邊形(4)定理3:對(duì)角線互相平分的四邊形是平行四邊形(5)定理4:一組對(duì)邊平行且相等的四邊形是平行四邊形4、兩條平行線之間的距離(平行線間的距離處處相等)

兩條平行線中,一條直線上的任意一點(diǎn)到另一條直線的距離,叫做這兩條平行線的距離。

5、平行四邊形的面積:S平行四邊形=底邊長(zhǎng)×高=ah三、菱形1、菱形的定義

有一組鄰邊相等的平行四邊形叫做菱形2、菱形的性質(zhì)

(1)菱形的四條邊相等,對(duì)邊平行(2)菱形的相鄰的角互補(bǔ),對(duì)角相等

(3)菱形的對(duì)角線互相垂直平分,并且每一條對(duì)角線平分一組對(duì)角(4)菱形既是中心對(duì)稱圖形又是軸對(duì)稱圖形;對(duì)稱中心是對(duì)角線的交點(diǎn)(對(duì)稱中心到菱形四條邊的距離相等);對(duì)稱軸有兩條,是對(duì)角線所在的直線。

3、菱形的判定

(1)定義:有一組鄰邊相等的平行四邊形是菱形(2)定理1:四邊都相等的四邊形是菱形(3)定理2:對(duì)角線互相垂直的平行四邊形是菱形4、菱形的面積

S菱形=底邊長(zhǎng)×高=兩條對(duì)角線乘積的一半四、矩形

1、矩形的定義

有一個(gè)角是直角的平行四邊形叫做矩形。2、矩形的性質(zhì)

(1)矩形的對(duì)邊平行且相等(2)矩形的四個(gè)角相等,都是直角(3)矩形的對(duì)角線相等且互相平分

(4)矩形既是中心對(duì)稱圖形又是軸對(duì)稱圖形;對(duì)稱中心是對(duì)角線的交點(diǎn)(對(duì)稱中心到矩形四個(gè)頂點(diǎn)的距離相等);對(duì)稱軸有兩條,是對(duì)邊中點(diǎn)連線所在的直線。

3、矩形的判定

(1)定義:有一個(gè)角是直角的平行四邊形是矩形(2)定理1:有三個(gè)角是直角的四邊形是矩形(3)定理2:對(duì)角線相等的平行四邊形是矩形4、矩形的面積:S矩形=長(zhǎng)×寬=ab五、正方形(3~10分)1、正方形的定義

有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。2、正方形的性質(zhì)

(1)正方形四條邊都相等,對(duì)邊平行(2)正方形的四個(gè)角都是直角

(3)正方形的兩條對(duì)角線相等,并且互相垂直平分,每一條對(duì)角線平分一組對(duì)角

(4)正方形既是中心對(duì)稱圖形又是軸對(duì)稱圖形;對(duì)稱中心是對(duì)角線的交點(diǎn);對(duì)稱軸有四條,是對(duì)角線所在的直線和對(duì)邊中點(diǎn)連線所在的直線。

3、正方形的判定

判定一個(gè)四邊形是正方形的主要依據(jù)是定義,途徑有兩種:先證它是矩形,再證它是菱形。先證它是菱形,再證它是矩形。4、正方形的面積

設(shè)正方形邊長(zhǎng)為a,對(duì)角線長(zhǎng)為bS正方形=2a2b

2例1.菱形的周長(zhǎng)為20cm,相鄰兩內(nèi)角的比為1:2,求菱形的面積?

解:如圖所示,菱形ABCD,由于周長(zhǎng)為20cm,∴AB=5cm

ADBEC

又A:B2:1,A120°,B60°

過點(diǎn)A作BC的垂線,垂足為E,則∠BAE=30°

BE12AB52

第3頁(yè)共4頁(yè)

22AEAB2BE5255223

S菱形535253cm222

另一種解法:如圖所示,連結(jié)AC、BD,相交于點(diǎn)O。

ADOBC

BAD:ABC2:1ABC60°,又ABBC

∴△ABC是等邊三角形,∴AC=5

又OAOC,OA52

又AOBD,OBAB2OA2

22555223

BD532

S菱形125532523cm

點(diǎn)撥:菱形的兩種求面積的方法都比較常用,注意根據(jù)題中所給的條件靈活選擇。有時(shí)要與一些特殊角,比如30°、60°角的特殊性質(zhì)聯(lián)系起來(lái)。

六、梯形

(一)1、梯形的相關(guān)概念

一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形叫做梯形。

梯形中平行的兩邊叫做梯形的底,通常把較短的底叫做上底,較長(zhǎng)的底叫做下底。梯形中不平行的兩邊叫做梯形的腰。梯形的兩底的距離叫做梯形的高。

2、梯形的判定

(1)定義法:一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形是梯形。(2)一組對(duì)邊平行且不相等的四邊形是梯形。

(二)直角梯形的定義:一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分類如下:一般梯形

梯形直角梯形特殊梯形

等腰梯形(三)等腰梯形1、等腰梯形的定義

兩腰相等的梯形叫做等腰梯形。2、等腰梯形的性質(zhì)

(1)等腰梯形的兩腰相等,兩底平行。

(2)等腰梯形同一底上的兩個(gè)角相等,同一腰上的兩個(gè)角互補(bǔ),不同底的兩個(gè)角互補(bǔ)。

(3)等腰梯形的對(duì)角線相等。

(4)等腰梯形是軸對(duì)稱圖形,它只有一條對(duì)稱軸,即兩底的垂直平分線。3、等腰梯形的判定

(1)定義:兩腰相等的梯形是等腰梯形

(2)定理:在同一底上的兩個(gè)角相等的梯形是等腰梯形

(3)對(duì)角線相等的梯形是等腰梯形。(選擇題和填空題可直接用)(四)梯形的面積(1)如圖,S1梯形ABCD(CDAB)DE2(2)梯形中有關(guān)圖形的面積:

①SABDSBAC;②SAODSBOC;③SADCSBCD

七、有關(guān)中點(diǎn)四邊形問題的知識(shí)點(diǎn):

(1)順次連接任意四邊形的四邊中點(diǎn)所得的四邊形是平行四邊形;(2)順次連接矩形的四邊中點(diǎn)所得的四邊形是菱形;(3)順次連接菱形的四邊中點(diǎn)所得的四邊形是矩形;(4)順次連接等腰梯形的四邊中點(diǎn)所得的四邊形是菱形;(5)順次連接對(duì)角線相等的四邊形四邊中點(diǎn)所得的四邊形是菱形;

(6)順次連接對(duì)角線互相垂直的四邊形四邊中點(diǎn)所得的四邊形是矩形;(7)順次連接對(duì)角線互相垂直且相等的四邊形四邊中點(diǎn)所得的四邊形是正方形;

八、中心對(duì)稱圖形1、定義

在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做它的對(duì)稱中心。

2、性質(zhì)

(1)關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形。

(2)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分。

(3)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)線段平行(或在同一直線上)且相等。3、判定

如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱。

例.作圖,作出△ABC繞O點(diǎn)旋轉(zhuǎn)180°后的圖形。

AOBC

解:作法:

(1)連結(jié)AO并延長(zhǎng)在延長(zhǎng)線上截取A’O=AO(2)連結(jié)BO并延長(zhǎng)在延長(zhǎng)線上截取B’O=BO(3)連結(jié)CO并延長(zhǎng)在延長(zhǎng)線上截取C’O=CO(4)順次連結(jié)A’B’,B’C’,C’A’!鰽’B’C’即為所求。

AC’OBB’CA’

九、四邊形、矩形、菱形、正方形、梯形、等腰梯形、直角梯形的關(guān)系:

例.如圖所示,梯形ABCD,AC=BD,這個(gè)梯形是等腰梯形嗎?說(shuō)明理由。

ADBC

解:是等腰梯形,理由如下:

把AC平移到DE的位置,則四邊形ACED是平行四邊形∵DE=BD,∠1=∠2∴∠2=∠3,∴∠1=∠3

在△DBC和△ACB中,DB=AC,∠1=∠3,BC=CB∴△DBC≌△ACB(SAS)∴DC=AB

∴梯形ABCD是等腰梯形。

AD312BCE

例1.如圖所示,矩形ABCD中,AB=4,BC=8,將矩形沿AC折疊,點(diǎn)D落在點(diǎn)

D’處,則重疊部分△AEC的面積為多少?

第4頁(yè)共4頁(yè)

ADBECD’

解:∵CD’=CD=AB,∠CED’=∠AEB,∠D’=∠B=90°

CED"AEBCEAE,D"EBE

設(shè)BEx,則CE8x,則AE8x

在RtABE中,有42x2(8x)2

x3則SABE12436

1

SABC24816

SAEC10

點(diǎn)撥:設(shè)未知數(shù)列方程有時(shí)是解決幾何問題的重要方法。

擴(kuò)展閱讀:八年級(jí)上冊(cè)期中考試知識(shí)點(diǎn)歸納(北師大版)

北師大版《數(shù)學(xué)》(八年級(jí)上冊(cè))知識(shí)點(diǎn)總結(jié)

第一章勾股定理

1、勾股定理

(1)直角三角形兩直角邊

a,b的平方和等于斜邊c

的平方,即a2b2c2

(2)勾股定理的驗(yàn)證:測(cè)量、數(shù)格子、拼圖法、面積法,如青朱出入圖、五巧板、玄圖、總統(tǒng)證法(通過面積的不同表示方法得到驗(yàn)證,也叫等面積法或等積法)

(3)勾股定理的適用范圍:僅限于直角三角形

2、勾股定理的逆定理

如果三角形的三邊長(zhǎng)a,b,c有關(guān)系a2b2c2,

那么這個(gè)三角形是直角三角形。

3、勾股數(shù):滿足a2b2c2的三個(gè)正整數(shù)a,b,

c,稱為勾股數(shù)。

常見的勾股數(shù)有:(6,8,10)(3,4,5)(5,12,,13)

(9,12,15)(7,24,25)(9,40,41)

規(guī)律:(1),短直角邊為奇數(shù),另一條直角邊與斜邊

是兩個(gè)連續(xù)的自然數(shù),兩邊之和是短直角邊的平方。即當(dāng)a為奇數(shù)且a<b時(shí),如果b+c=a2

那么a,b,c就是一組勾股數(shù).如(3,4,5)(5,12,,13)(7,24,25)(9,40,41)

(2)大于2的任意偶數(shù),2n(n>1)都可構(gòu)成一

組勾股數(shù)分別是:2n,n2-1,n2+1

米,梯子滑動(dòng)后停在DE位置上,如圖(2)所示,測(cè)如:(6,8,10)(8,15,17)(10,24,26)

得得BD=0.5米,求梯子頂端A下落了多少米?

4、常見題型應(yīng)用:

AAE(1)已知任意兩條邊的長(zhǎng)度,求第三邊/斜邊上

的高線/周長(zhǎng)/面積

CBCBD(1)(2)

(2)已知任意一條的邊長(zhǎng)以及另外兩條邊長(zhǎng)

思維入門指導(dǎo):梯子頂端A下落的距離為AE,即

之間的關(guān)系,求各邊的長(zhǎng)度//斜邊上的高線/周長(zhǎng)/面求AE的長(zhǎng)。已知AB和BC,根據(jù)勾股定理可求AC,積

只要求出EC即可。

(3)判定三角形形狀:a2+b2>c2銳角~,a2解:在Rt△ACB中,AC2=AB2-BC2=2.52-1.52=4,+b2=c2直角~,a2+b2<c2鈍角~

∴AC=2

判定直角三角形a..找最長(zhǎng)邊;b.比較長(zhǎng)邊的∵BD=0.5,∴CD=2平方與另外兩條較短邊的平方和之間的大小關(guān)系;c.

確定形狀

在RtECD中,EC2ED2CD22.52222.25(4)構(gòu)建直角三角形解題

∴EC=1.5

例1.已知直角三角形的兩直角邊之比為3:4,斜邊為AEACEC215.05.

10。求直角三角形的兩直角邊。

答:梯子頂端下滑了0.5米。解:設(shè)兩直角邊為3x,4x,由題意知:點(diǎn)撥:要考慮梯子的長(zhǎng)度不變。

例5.如圖所示的一塊地,AD=12m,CD=9m,∠

ADC=90°,AB=39m,BC=36m,求這塊地的面積。

(3x)2(4x)2100,9x216x2100,25x2100,x24A∴x=2,則3x=6,4x=8,故兩直角邊為6,8。

D中考突破

CB(1)中考典題

思維入門指導(dǎo):求面積時(shí)一般要把不規(guī)則圖形分割成規(guī)則圖形,若連結(jié)BD,例.如圖(1)所示,一個(gè)梯子AB長(zhǎng)2.5米,頂端似乎不得要領(lǐng),連結(jié)AC,求出SABCSACD即可。

A靠在墻AC上,這時(shí)梯子下端B與墻角C距離為1.5

解:連結(jié)AC,在Rt△ADC中,

第1頁(yè)共8頁(yè)

ADCB

AC2CD2AD212292225

AC15

在△ABC中,AB2=1521

AC2BC21523621521

AB2AC2BC2,ACB90°

1

SABCSACD2ACBC12ADCD

11

21536212927054216(m2)

答:這塊地的面積是216平方米。

點(diǎn)撥:此題綜合地應(yīng)用了勾股定理和直角三角形判定條件。

第二章實(shí)數(shù)

基本知識(shí)回顧

1.無(wú)理數(shù)的引入。無(wú)理數(shù)的定義無(wú)限不循環(huán)小數(shù)。

算術(shù)平方根定義如果一個(gè)非負(fù)數(shù)x的平方等于a,即實(shí)數(shù)x2a負(fù)有理數(shù)那么這個(gè)非負(fù)數(shù)x就叫做a的算術(shù)平方根,記為a,0正無(wú)理數(shù)算術(shù)平方根為非負(fù)數(shù)a正數(shù)的平方根有2個(gè),它們互為相反數(shù)無(wú)理數(shù)無(wú)限不循環(huán)小平方根0的平方根是0數(shù)2.無(wú)理數(shù)的表示負(fù)數(shù)沒有平方根定義:如果一個(gè)數(shù)的平方等于a,即x2a,那么這個(gè)數(shù)就負(fù)無(wú)理數(shù)叫做a的平方根,記為a2、無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫做無(wú)理數(shù)。正數(shù)的立方根是正數(shù)立方根在理解無(wú)理數(shù)時(shí),要抓住“無(wú)限不循環(huán)”這一時(shí)負(fù)數(shù)的立方根是負(fù)數(shù)0的立方根是0之,歸納起來(lái)有四類:定義:如果一個(gè)數(shù)x的立方等于a,即x3a,那么這個(gè)數(shù)(1)開方開不盡的數(shù),如x7,32等;就叫做a的立方根,記為3a.)有特定意義的數(shù),

(2如圓周率π,或化簡(jiǎn)后含

概念有理數(shù)和無(wú)理數(shù)統(tǒng)稱實(shí)數(shù)有π的數(shù),如π/3+8等;正數(shù)(3)有一定規(guī)律,但并不循環(huán)的數(shù),如分類有理數(shù)或00.1010010001等;無(wú)理數(shù)3.實(shí)數(shù)及其相關(guān)概念負(fù)數(shù)(4)某些三角函數(shù)值,如sin60o等絕對(duì)值、相反數(shù)、倒數(shù)的意義同有理數(shù)二、實(shí)數(shù)的倒數(shù)、相反數(shù)和絕對(duì)值實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)1、相反數(shù)實(shí)數(shù)的運(yùn)算法則、運(yùn)算規(guī)律與有理數(shù)的運(yùn)算法則實(shí)數(shù)與它的相反數(shù)時(shí)一對(duì)數(shù)(只有符號(hào)不同的兩運(yùn)算規(guī)律相同。個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上

看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱,一、實(shí)數(shù)的概念及分類如果a與b互為相反數(shù),則有a+b=0,a=b,反之

1、實(shí)數(shù)的分類亦成立。正有理數(shù)2、絕對(duì)值

有理數(shù)零有限小數(shù)和在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,叫無(wú)限循環(huán)小數(shù)

第2頁(yè)共8頁(yè)做該數(shù)的絕對(duì)值。(|a|≥0)。零的絕對(duì)值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

3、倒數(shù)

如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

4、數(shù)軸

規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸(畫數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可)。

解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對(duì)應(yīng)的,并能靈活運(yùn)用。

5、估算

利用非負(fù)數(shù)解題的常見類型

例1.

已知x5|y3|0,求x22y的值。

解:

x50,|y3|0,且x5|y3|0x50,|y3|0x50,y30x5,y3

x22y25619

點(diǎn)撥:利用算術(shù)平方根,絕對(duì)值非負(fù)性解題。

三、平方根、算數(shù)平方根和立方根

1、算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方

根。特別地,0的算術(shù)平方根是0。

表示方法:記作“a”,讀作根號(hào)a。性質(zhì):正數(shù)和零的算術(shù)平方根都只有一個(gè),零的算術(shù)平方根是零。

2、平方根:一般地,如果一個(gè)數(shù)x的平方等于a,即x2=a,那么這個(gè)數(shù)x就叫做a的平方根(或二次方根)。表示方法:正數(shù)a的平方根記做“a”,讀作“正、負(fù)根號(hào)a”。

性質(zhì):一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒有平方根。

開平方:求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開平方。注意a的雙重非負(fù)性:被開方數(shù)與結(jié)果均為非負(fù)數(shù)。即a≥0,3、立方根

一般地,如果一個(gè)數(shù)x的立方等于a,即x3

=a那么這個(gè)數(shù)x就叫做a的立方根(或三次方根)。

表示方法:記作3a

性質(zhì):一個(gè)正數(shù)有一個(gè)正的立方根;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根;零的立方根是零。

注意:3a3a,這說(shuō)明三次根號(hào)內(nèi)的負(fù)號(hào)可以移到根號(hào)外面。

四、實(shí)數(shù)大小的比較

1、實(shí)數(shù)比較大小:正數(shù)大于零,負(fù)數(shù)小于零,

第3頁(yè)共8頁(yè)

正數(shù)大于一切負(fù)數(shù);數(shù)軸上的兩個(gè)點(diǎn)所表示的數(shù),右邊的總比左邊的大;兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。

2、實(shí)數(shù)大小比較的幾種常用方法

(1)數(shù)軸比較:在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大。

(2)求差比較:設(shè)a、b是實(shí)數(shù),

ab0ab,ab0ab,

ab0ab

(3)求商比較法:設(shè)a、b是兩正實(shí)數(shù),

ab1ab;a1bab;ab1ab;

(4)絕對(duì)值比較法:設(shè)a、b是兩負(fù)實(shí)數(shù),則

abab。

(5)平方法:設(shè)a、b是兩負(fù)實(shí)數(shù),則

a2b2ab。

(6)倒數(shù)法:設(shè)a、b是同正,如果1/a>1/b,則a<b;同負(fù),如果1/a>1/b,則a>b

五、算術(shù)平方根有關(guān)計(jì)算(二次根式)

1、含有二次根號(hào)“”;被開方數(shù)a必須是非

負(fù)數(shù)。

2、性質(zhì):

(1)(a)2a(a0)

2(2)aa

a(a0)

abab(a0,b0)

(1)(2)2121;;a(a0)

((

3)

abab(a0,b0))

3232(3)2323

(4)5252

移后的點(diǎn)連成線段,即為原線段平移后的線段;作法2:將線段一端點(diǎn)平移,然后過平移后的點(diǎn)

;.作原線段的平行線,在該平行線適當(dāng)方向截取長(zhǎng)度為指定線段長(zhǎng)度,則所得線段為所求.

(4)

aa通過以上計(jì)算,觀察規(guī)律,寫出用n(n為正整數(shù))(a0,b0)

bb(abab(a0,b0))

3、運(yùn)算結(jié)果若含有“

a”形式,必須滿足:

(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式

六、實(shí)數(shù)的運(yùn)算

(1)六種運(yùn)算:加、減、乘、除、乘方、開方(2)實(shí)數(shù)的運(yùn)算順序

先算乘方和開方,再算乘除,最后算加減,如果有括號(hào),就先算括號(hào)里面的。

(3)運(yùn)算律

加法交換律abba加法結(jié)合律(ab)ca(bc)乘法交換律abba乘法結(jié)合律(ab)ca(bc)乘法對(duì)加法的分配律a(bc)abac

例.計(jì)算:

表示上面規(guī)律的等式___________。解

2211;32221;4321;5241

規(guī)律:n1nn1n1

第三章圖形的平移與旋轉(zhuǎn)

一、平移

1、定義:在平面內(nèi),將一個(gè)圖形整體沿某方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移。

2、要素(或條件):方向,即前后對(duì)應(yīng)點(diǎn)的射線方向;距離,即對(duì)應(yīng)點(diǎn)之間的距離

3、性質(zhì):平移前后兩個(gè)圖形的形狀和大小不變(即全等圖形),對(duì)應(yīng)點(diǎn)連線平行(或在同一條直線上)且相等,對(duì)應(yīng)線段平行(或在同一條直線上)且相等,對(duì)應(yīng)角相等。4、平移作圖:線段的平移作法:

作法1:將線段兩端點(diǎn)分別平移,然后將兩個(gè)平

第4頁(yè)共8頁(yè)

二、旋轉(zhuǎn)

1、定義:在平面內(nèi),將一個(gè)圖形繞某一定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn),這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角。

2、要素(或條件):旋轉(zhuǎn)中心(定點(diǎn))、旋轉(zhuǎn)方向(順時(shí)針/逆時(shí)針)、旋轉(zhuǎn)角度(0~3600)

3、性質(zhì):旋轉(zhuǎn)前后兩個(gè)圖形是全等圖形,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角等于旋轉(zhuǎn)角。4、旋轉(zhuǎn)作圖:

(1)作圖步驟:觀察基本圖案(確定關(guān)鍵點(diǎn))確定旋轉(zhuǎn)的三要素找到對(duì)應(yīng)點(diǎn)連接對(duì)應(yīng)點(diǎn)作答

(2)旋轉(zhuǎn)作圖的方法:1、把各關(guān)鍵點(diǎn)依次與旋轉(zhuǎn)中心連接

2、按要求向順時(shí)針/逆時(shí)針旋轉(zhuǎn)相應(yīng)角度

3、截取對(duì)應(yīng)線段4、連接對(duì)應(yīng)點(diǎn)5、作答

三、簡(jiǎn)單的圖案設(shè)計(jì):

第四章四邊形性質(zhì)探索

一、四邊形的相關(guān)概念

1、四邊形:在同一平面內(nèi),由不在同一直線上的

四條線段首尾順次相接組成的圖形叫做四邊形。

2、四邊形具有不穩(wěn)定性

3、四邊形的內(nèi)角和定理及外角和定理四邊形的內(nèi)角和定理:四邊形的內(nèi)角和等于360°。

四邊形的外角和定理:四邊形的外角和等于360°。

推論:多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)×180°;

多邊形的外角和定理:任意多邊形的外角和等于360°。

6、設(shè)多邊形的邊數(shù)為n,從n邊形的一個(gè)頂點(diǎn)出發(fā)能引(n-3)條對(duì)角線,將n邊形分成(n-2)個(gè)三

角形。多邊形的對(duì)角線共有n(n3)2條。

二、平行四邊形

1、平行四邊形的定義

兩組對(duì)邊分別平行的四邊形叫做平行四邊形。

2、平行四邊形的性質(zhì)

(1)平行四邊形的對(duì)邊平行且相等。(2)平行四邊形相鄰的角互補(bǔ),對(duì)角相等(3)平行四邊形的對(duì)角線互相平分。(4)平行四邊形是中心對(duì)稱圖形,對(duì)稱中心是對(duì)角線的交點(diǎn)。

常用點(diǎn):(1)若一直線過平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段的中點(diǎn)是對(duì)角線的交點(diǎn),并且這條直線二等分此平行四邊形的面積。

(2)推論:夾在兩條平行線間的平行線段相等。3、平行四邊形的判定

(1)定義:兩組對(duì)邊分別平行的四邊形是平行四邊形

(2)定理1:兩組對(duì)角分別相等的四邊形是平行四邊形

(3)定理2:兩組對(duì)邊分別相等的四邊形是平行四邊形

(4)定理3:對(duì)角線互相平分的四邊形是平行四邊形

(5)定理4:一組對(duì)邊平行且相等的四邊形是平行四邊形

4、兩條平行線之間的距離(平行線間的距離處處

第5頁(yè)共8頁(yè)

相等)

兩條平行線中,一條直線上的任意一點(diǎn)到另一條直線的距離,叫做這兩條平行線的距離。

5、平行四邊形的面積:S平行四邊形=底邊長(zhǎng)×高=ah

三、菱形

1、菱形的定義

有一組鄰邊相等的平行四邊形叫做菱形2、菱形的性質(zhì)

(1)菱形的四條邊相等,對(duì)邊平行(2)菱形的相鄰的角互補(bǔ),對(duì)角相等(3)菱形的對(duì)角線互相垂直平分,并且每一條對(duì)角線平分一組對(duì)角

(4)菱形既是中心對(duì)稱圖形又是軸對(duì)稱圖形;對(duì)稱中心是對(duì)角線的交點(diǎn)(對(duì)稱中心到菱形四條邊的距離相等);對(duì)稱軸有兩條,是對(duì)角線所在的直線。

3、菱形的判定

(1)定義:有一組鄰邊相等的平行四邊形是菱形(2)定理1:四邊都相等的四邊形是菱形(3)定理2:對(duì)角線互相垂直的平行四邊形是菱形

4、菱形的面積

S菱形=底邊長(zhǎng)×高=兩條對(duì)角線乘積的一半四、矩形1、矩形的定義有一個(gè)角是直角的平行四邊形叫做矩形。2、矩形的性質(zhì)

(1)矩形的對(duì)邊平行且相等(2)矩形的四個(gè)角相等,都是直角(3)矩形的對(duì)角線相等且互相平分

(4)矩形既是中心對(duì)稱圖形又是軸對(duì)稱圖形;對(duì)稱中心是對(duì)角線的交點(diǎn)(對(duì)稱中心到矩形四個(gè)頂點(diǎn)的距離相等);對(duì)稱軸有兩條,是對(duì)邊中點(diǎn)連線所在的直線。

3、矩形的判定

(1)定義:有一個(gè)角是直角的平行四邊形是矩形(2)定理1:有三個(gè)角是直角的四邊形是矩形(3)定理2:對(duì)角線相等的平行四邊形是矩形

4、矩形的面積:S矩形=長(zhǎng)×寬=ab五、正方形(3~10分)

1、正方形的定義

有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。

2、正方形的性質(zhì)

(1)正方形四條邊都相等,對(duì)邊平行(2)正方形的四個(gè)角都是直角

(3)正方形的兩條對(duì)角線相等,并且互相垂直平分,

每一條對(duì)角線平分一組對(duì)角

(4)正方形既是中心對(duì)稱圖形又是軸對(duì)稱圖形;對(duì)稱中心是對(duì)角線的交點(diǎn);對(duì)稱軸有四條,是對(duì)角線所在的直線和對(duì)邊中點(diǎn)連線所在的直線。

3、正方形的判定

判定一個(gè)四邊形是正方形的主要依據(jù)是定義,途徑有兩種:

先證它是矩形,再證它是菱形。先證它是菱形,再證它是矩形。4、正方形的面積

設(shè)正方形邊長(zhǎng)為a,對(duì)角線長(zhǎng)為bS2正方形=a2b2

例1.菱形的周長(zhǎng)為20cm,相鄰兩內(nèi)角的比為1:2,求菱形的面積?

解:如圖所示,菱形ABCD,由于周長(zhǎng)為20cm,∴AB=5cm

ADBEC

又A:B2:1,A120°,B60°

過點(diǎn)A作BC的垂線,垂足為E,則∠BAE=30°

BE152AB2第6頁(yè)共8頁(yè)

22AEABBE25255223

S菱形52352523cm2

另一種解法:如圖所示,連結(jié)AC、BD,相交于點(diǎn)O。

ADOBC

BAD:ABC2:1ABC60°,又ABBC∴△ABC是等邊三角形,∴AC=5

又OAOC,OA52又AOBD,OBAB2OA2

52525

223

BD53

S155325菱形3cm222

點(diǎn)撥:菱形的兩種求面積的方法都比較常用,注

意根據(jù)題中所給的條件靈活選擇。有時(shí)要與一些特殊角,比如30°、60°角的特殊性質(zhì)聯(lián)系起來(lái)。

六、梯形

(一)1、梯形的相關(guān)概念

一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形叫做

梯形。

梯形中平行的兩邊叫做梯形的底,通常把較短的底叫做上底,較長(zhǎng)的底叫做下底。梯形中不平行的兩邊叫做梯形的腰。梯形的兩底的距離叫做梯形的高。

2、梯形的判定

(1)定義法:一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形是梯形。

(2)一組對(duì)邊平行且不相等的四邊形是梯形。(二)直角梯形的定義:一腰垂直于底的梯形叫做直角梯形。

一般地,梯形的分類如下:一般梯形

梯形直角梯形特殊梯形

等腰梯形(三)等腰梯形1、等腰梯形的定義

兩腰相等的梯形叫做等腰梯形。2、等腰梯形的性質(zhì)

(1)等腰梯形的兩腰相等,兩底平行。(2)等腰梯形同一底上的兩個(gè)角相等,同一腰上的兩個(gè)角互補(bǔ),不同底的兩個(gè)角互補(bǔ)。

(3)等腰梯形的對(duì)角線相等。

(4)等腰梯形是軸對(duì)稱圖形,它只有一條對(duì)稱軸,即兩底的垂直平分線。

3、等腰梯形的判定

(1)定義:兩腰相等的梯形是等腰梯形(2)定理:在同一底上的兩個(gè)角相等的梯形是等腰梯形

(3)對(duì)角線相等的梯形是等腰梯形。(選擇題和填空題可直接用)

(四)梯形的面積(1)如圖,

S梯形ABCD1(CDAB

2)DE(2)梯形中有關(guān)圖

形的面積:

①SABDSBAC;②SAODSBOC;

③SADCSBCD

七、有關(guān)中點(diǎn)四邊形問題的知識(shí)點(diǎn):(1)順次連接任意四邊形的四邊中點(diǎn)所得的四邊形是平行四邊形;

(2)順次連接矩形的四邊中點(diǎn)所得的四邊形是菱形;(3)順次連接菱形的四邊中點(diǎn)所得的四邊形是矩形;(4)順次連接等腰梯形的四邊中點(diǎn)所得的四邊形是

第7頁(yè)共8頁(yè)

菱形;

(5)順次連接對(duì)角線相等的四邊形四邊中點(diǎn)所得的四邊形是菱形;

(6)順次連接對(duì)角線互相垂直的四邊形四邊中點(diǎn)所得的四邊形是矩形;

(7)順次連接對(duì)角線互相垂直且相等的四邊形四邊中點(diǎn)所得的四邊形是正方形;

八、中心對(duì)稱圖形

1、定義

在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做它的對(duì)稱中心。

2、性質(zhì)

(1)關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形。(2)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分。

(3)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)線段平行(或在同一直線上)且相等。

3、判定

如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱。例.作圖,作出△ABC繞O點(diǎn)旋轉(zhuǎn)180°后的圖形。AOBCADBC設(shè)BEx,則CE8x,則AE8x

222在RtABE中,有4x(8x)

解:是等腰梯形,理由如下:

x3

14362

把AC平移到DE的位置,則四邊形ACED是平則SABE

解:作法:

(1)連結(jié)AO并延長(zhǎng)在延長(zhǎng)線上截取A’O=AO(2)連結(jié)BO并延長(zhǎng)在延長(zhǎng)線上截取B’O=BO(3)連結(jié)CO并延長(zhǎng)在延長(zhǎng)線上截取C’O=CO(4)順次連結(jié)A’B’,B’C’,C’A’!鰽’B’C’即為所求。

AC’OBB’CA’

九、四邊形、矩形、菱形、正方形、梯形、等腰梯形、直角梯形的關(guān)系:

例.如圖所示,梯形ABCD,AC=BD,這個(gè)梯形是等腰梯形嗎?說(shuō)明理由。

行四邊形

∵DE=BD,∠1=∠2∴∠2=∠3,∴∠1=∠3

在△DBC和△ACB中,DB=AC,∠1=∠3,BC=CB∴△DBC≌△ACB(SAS)∴DC=AB

∴梯形ABCD是等腰梯形。

AD312BCE

例1.如圖所示,矩形ABCD中,AB=4,BC=8,將矩形沿AC折疊,點(diǎn)D落在點(diǎn)D’處,則重疊部分△AEC的面積為多少?

ADBECD’

解:∵CD’=CD=AB,∠CED’=∠AEB,∠D’=∠

B=90°

CED"AEBCEAE,D"EBE

第8頁(yè)共8頁(yè)

SABC124816

SAEC10

點(diǎn)撥:設(shè)未知數(shù)列方程有時(shí)是解決幾何問題的重要方法。

友情提示:本文中關(guān)于《八年級(jí)上冊(cè)期中考試知識(shí)點(diǎn)歸納(北師大版)》給出的范例僅供您參考拓展思維使用,八年級(jí)上冊(cè)期中考試知識(shí)點(diǎn)歸納(北師大版):該篇文章建議您自主創(chuàng)作。

來(lái)源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請(qǐng)聯(lián)系我們及時(shí)刪除。


八年級(jí)上冊(cè)期中考試知識(shí)點(diǎn)歸納(北師大版)》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請(qǐng)保留原作者信息,謝謝!
鏈接地址:http://m.hmlawpc.com/gongwen/673720.html