高二數(shù)學(xué)知識點總結(jié)
高二數(shù)學(xué)知識點總結(jié)
一、直線與圓:
1、直線的傾斜角的范圍是[0,)
在平面直角坐標(biāo)系中,對于一條與x軸相交的直線l,如果把x軸繞著交點按逆時針方向轉(zhuǎn)到和直線l重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線l與x軸重合或平行時,規(guī)定傾斜角為0;
2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.
過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。
3、直線方程:⑴點斜式:直線過點(x0,y0)斜率為k,則直線方程為yy0k(xx0),
⑵斜截式:直線在y軸上的截距為b和斜率k,則直線方程為ykxb
4、l1:yk1xb1,l2:yk2xb2,①l1∥l2k1k2,b1b2;l1l2k1k21.
直線l1:A1xB1yC10與直線l2:A2xB2yC20的位置關(guān)系:(1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=05、點P(x0,y0)到直線AxByC0的距離公式dAx0By0CA2B2;兩條平行線AxByC10與AxByC1C220的距離是dCA2B2
6、圓的標(biāo)準(zhǔn)方程:(xa)2(yb)2r2.⑵圓的一般方程:x2y2DxEyF0
注意能將標(biāo)準(zhǔn)方程化為一般方程
7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與x軸垂直的直線.
8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.①dr相離②dr相切③dr相交
9、解決直線與圓的關(guān)系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長
|AB|2r2d2二、圓錐曲線方程:1、橢圓:①方程
x2y2a2b21(a>b>0)注意還有一個;②定義:
|PF
1|+|PF2|=2a>2c;③e=ca1b2a2④長軸長為2a,短軸長為2b,焦距
為2c;a2=b2+c2;2、雙曲線:①方程
x2a2y2b21(a,b>0)注意還有一個;②定義:
||PFc21|-|PF2||=2a義:|PF|=d焦點F(p,0),準(zhǔn)線x=-p;③焦半徑AFxAp;焦點弦AB=
222x1+x2+p;
4、直線被圓錐曲線截得的弦長公式:
5、注意解析幾何與向量結(jié)合問題:1、a(x1,y1),b(x2,y2).
(1)a//bx1y2x2y10;(2)abab0x1x2y1y20.
2、數(shù)量積的定義:已知兩個非零向量a和b,它們的夾角為θ,則數(shù)量
|a||b|cosθ叫做a與b的數(shù)量積,記作ab,即aba|b||co|sxxyy12123、模的計算:|a|=a2.算模可以先算向量的平方
4、向量的運算過程中完全平方公式等照樣適用:如abcacbc
三、直線、平面、簡單幾何體:1、學(xué)會三視圖的分析:
2、斜二測畫法應(yīng)注意的地方:(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應(yīng)軸o"x"、o"y"、使∠x"o"y"=45°(或135°);(2)平行于x軸的線段長不變,平行于y軸的線段長減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.3、表(側(cè))面積與體積公式:
⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=2rh;③體積:V=S底h
1⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=rl;③體積:V=S底h:
3⑶臺體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=(rr")l⑷球體:①表面積:S=4R;②體積:V=R3
2434、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫
(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。(2)平面與平面平行:①線面平行面面平行。
(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線
5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)
⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;⑵直線與平面所成的角:直線與射影所成的角
四、導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問題、曲線切線問題)
1、導(dǎo)數(shù)的定義:f(x)在點x0處的導(dǎo)數(shù)記作
yxx0f(x0)limf(x0x)f(x0)xx0.
2.導(dǎo)數(shù)的幾何物理意義:曲線yf(x)在點P(x0,f(x0))處切線的斜率
①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速
度。a=v/(t)表示加速度。
3.常見函數(shù)的導(dǎo)數(shù)公式:①C"0;②(xn)"nxn1;③
(sinx)"cosx(cosx)"sinx;
⑤(ax)"axlna;⑥(ex)"ex;⑦(logax)"1xlna;⑧(lnx)"1x。4.導(dǎo)數(shù)的四則運算法則:(uv)uv;(uv)uvuv;(u)uvuvvv2;5.導(dǎo)數(shù)的應(yīng)用:
(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)yf(x)在某個區(qū)間內(nèi)可導(dǎo),如果f(x)0,那么f(x)為增函數(shù);如果f(x)0,那么f(x)為減函數(shù);
注意:如果已知f(x)為減函數(shù)求字母取值范圍,那么不等式f(x)0恒成立。
(2)求極值的步驟:①求導(dǎo)數(shù)f(x);
②求方程f(x)0的根;
③列表:檢驗f(x)在方程f(x)0根的左右的符號,如果左正右負(fù),那么函數(shù)yf(x)在這個根處取得極大值;如果左負(fù)右正,那么函數(shù)yf(x)在這個根處取得極小值;
(3)求可導(dǎo)函數(shù)最大值與最小值的步驟:
求f(x)0的根;把根與區(qū)間端點函數(shù)值比較,最大的為最大值,最小的是最小值。
五、常用邏輯用語:1、四種命題:
⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p
注:1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉(zhuǎn)化。
2、注意命題的否定與否命題的區(qū)別:命題pq否定形式是pq;否命題是pq.命題“p或q”的否定是“p且q”;“p且q”的否定是“p或q”.
3、邏輯聯(lián)結(jié)詞:
⑴且(and):命題形式pq;pqpqpqp⑵或(or):命題形式pq;真真真真假⑶非(not):命題形式p.真假假真假假真假真真假假假假真
“或命題”的真假特點是“一真即真,要假全假”;“且命題”的真假特點是“一假即假,要真全真”;“非命題”的真假特點是“一真一假”4、充要條件
由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。5、全稱命題與特稱命題:
短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號表示。含有全體量詞的命題,叫做全稱命題。
短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,并用符號表示,含有存在量詞的命題,叫做存在性命題。
全稱命題p:xM,p(x);
xM,p(x)。
全稱命題p的否定p:
特稱命題p:xM,p(x);
xM,p(x);
特稱命題p的否定p:
考前寄語:①先易后難,先熟后生;②一慢一快:審題要慢,做題要快;③不能小題難做,小題大做,而要小題小做,小題巧做;④我易人易我不大意,我難人難我不畏難;⑤考試不怕題不會,就怕會題做不對;⑥基礎(chǔ)題拿滿分,中檔題拿足分,難題力爭多得分,似曾相識題力爭不失分;⑦對數(shù)學(xué)解題有困難的考生的建議:立足中下題目,力爭高上水平,有時“放棄”是一種策略.
擴(kuò)展閱讀:高二數(shù)學(xué)選修2-1知識點總結(jié)
高二數(shù)學(xué)(上)期末復(fù)習(xí)部分知識點概要201*-1-5高二數(shù)學(xué)選修2-1知識點
1、命題:用語言、符號或式子表達(dá)的,可以判斷真假的陳述句.真命題:判斷為真的語句.假命題:判斷為假的語句.2、“若p,則q”形式的命題中的p稱為命題的條件,q稱為命題的結(jié)論.
3、對于兩個命題,如果一個命題的條件和結(jié)論分別是另一個命題的結(jié)論和條件,則這兩個命題稱為互逆命題.其中一個命題稱為原命題,另一個稱為原命題的逆命題.若原命題為“若p,則q”,它的逆命題為“若q,則p”.
4、對于兩個命題,如果一個命題的條件和結(jié)論恰好是另一個命題的條件的否定和結(jié)論的否定,則這兩個命題稱為互否命題.中一個命題稱為原命題,另一個稱為原命題的否命題.若原命題為“若p,則q”,則它的否命題為“若p,則q”.
5、對于兩個命題,如果一個命題的條件和結(jié)論恰好是另一個命題的結(jié)論的否定和條件的否定,則這兩個命題稱為互為逆否命題.其中一個命題稱為原命題,另一個稱為原命題的逆否命題.
若原命題為“若p,則q”,則它的否命題為“若q,則p”.6、四種命題的真假性:
原命題逆命題否命題逆否命題真真真真真假假真假真真真假假假假
四種命題的真假性之間的關(guān)系:
1兩個命題互為逆否命題,它們有相同的真假性;
2兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
7、若pq,則p是q的充分條件,q是p的必要條件.若pq,則p是q的充要條件(充分必要條件).
8、用聯(lián)結(jié)詞“且”把命題p和命題q聯(lián)結(jié)起來,得到一個新命題,記作pq.
當(dāng)p、q都是真命題時,pq是真命題;當(dāng)p、q兩個命題中有一個命題是假命題時,pq是假命題.
用聯(lián)結(jié)詞“或”把命題p和命題q聯(lián)結(jié)起來,得到一個新命題,記作pq.
當(dāng)p、q兩個命題中有一個命題是真命題時,pq是真命題;當(dāng)p、q兩個命題都是假命題時,pq是假命題.
對一個命題p全盤否定,得到一個新命題,記作p.
若p是真命題,則p必是假命題;若p是假命題,則p必是真命題.
9、短語“對所有的”、“對任意一個”在邏輯中通常稱為全稱量詞,用“”表示.含有全稱量詞的命題稱為全稱命題.
全稱命題“對中任意一個x,有px成立”,記作“x,px”.短語“存在一個”、“至少有一個”在邏輯中通常稱為存在量詞,用“”表示.含有存在量詞的命題稱為特稱命題.
特稱命題“存在中的一個x,使px成立”,記作“x,px”.
10、全稱命題p:x,px,它的否定p:x,px.全稱命題的否定是特稱命題.11、平面內(nèi)與兩個定點F(大于F的點的軌跡稱為橢圓.這F2的距離之和等于常數(shù)1,1F2)兩個定點稱為橢圓的焦點,兩焦點的距離稱為橢圓的焦距.12、橢圓的幾何性質(zhì):
1--高二數(shù)學(xué)(上)期末復(fù)習(xí)部分知識點概要201*-1-5焦點的位置
焦點在x軸上
焦點在y軸上
圖形
標(biāo)準(zhǔn)方程范圍頂點軸長焦點焦距對稱性離心率準(zhǔn)線方程
xy1ab0a2b2axa且byb
22yx1ab0a2b2bxb且aya
221a,0、2a,010,b、20,bF1c,0、F2c,0
10,a、20,a1b,0、2b,0F10,c、F20,c
短軸的長2b長軸的長2a
F1F22cc2a2b2
關(guān)于x軸、y軸、原點對稱
cb2e120e1
aaa2x
ca2y
c13、設(shè)是橢圓上任一點,點到F1對應(yīng)準(zhǔn)線的距離為d1,點到F2對應(yīng)準(zhǔn)線的距離為d2,則
F1d1F2d2e.
14、平面內(nèi)與兩個定點F1,F(xiàn)2的距離之差的絕對值等于常數(shù)(小于F1F2)的點的軌跡稱為雙曲線.這兩個定點稱為雙曲線的焦點,兩焦點的距離稱為雙曲線的焦距.15、雙曲線的幾何性質(zhì):
焦點在y軸上焦點的位置焦點在x軸上
圖形
標(biāo)準(zhǔn)方程范圍頂點軸長焦點
xy1a0,b022abxa或xa,yR
22yx1a0,b022abya或ya,xR
221a,0、2a,0F1c,0、F2c,0
10,a、20,aF10,c、F20,c
虛軸的長2b實軸的長2a
2--高二數(shù)學(xué)(上)期末復(fù)習(xí)部分知識點概要201*-1-5焦距對稱性離心率準(zhǔn)線方程漸近線方程
F1F22cc2a2b2
關(guān)于x軸、y軸對稱,關(guān)于原點中心對稱
cb2e12e1
aaa2x
cbyx
aa2y
cayx
b16、實軸和虛軸等長的雙曲線稱為等軸雙曲線.
17、設(shè)是雙曲線上任一點,點到F1對應(yīng)準(zhǔn)線的距離為d1,點到F2對應(yīng)準(zhǔn)線的距離為d2,則
F1d1F2d2e.
18、平面內(nèi)與一個定點F和一條定直線l的距離相等的點的軌跡稱為拋物線.定點F稱為拋物線的焦點,定直線l稱為拋物線的準(zhǔn)線.
19、過拋物線的焦點作垂直于對稱軸且交拋物線于、兩點的線段,稱為拋物線的
“通徑”,即2p.20、焦半徑公式:
p;2p2若點x0,y0在拋物線y2pxp0上,焦點為F,則Fx0;
2p2若點x0,y0在拋物線x2pyp0上,焦點為F,則Fy0;
2p2若點x0,y0在拋物線x2pyp0上,焦點為F,則Fy0.
2若點x0,y0在拋物線y22pxp0上,焦點為F,則Fx0
21、拋物線的幾何性質(zhì):標(biāo)準(zhǔn)方程
y22pxy22pxx22pyx22py
p0p0p0p0圖形頂點對稱軸焦點準(zhǔn)線方程
0,0
x軸
pF,02xp2y軸
pF,02xp2pF0,
2yp2pF0,
2yp23--高二數(shù)學(xué)(上)期末復(fù)習(xí)部分知識點概要201*-1-5離心率范圍
e1x0x0y0y04--
友情提示:本文中關(guān)于《高二數(shù)學(xué)知識點總結(jié)》給出的范例僅供您參考拓展思維使用,高二數(shù)學(xué)知識點總結(jié):該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。