八年級(jí)數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié)
一次函數(shù)知識(shí)點(diǎn)總結(jié)
基本概念
1、變量:在一個(gè)變化過程中可以取不同數(shù)值的量。常量:在一個(gè)變化過程中只能取同一數(shù)值的量。
例題:在勻速運(yùn)動(dòng)公式中,表示速度,表示時(shí)間,表示在時(shí)間內(nèi)所走的路程,則變量是________,常量是_______。在圓的周長公式C=2πr中,變量是________,常量是_________.
2、函數(shù):一般的,在一個(gè)變化過程中,如果有兩個(gè)變量x和y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。
*判斷Y是否為X的函數(shù),只要看X取值確定的時(shí)候,Y是否有唯一確定的值與之對(duì)應(yīng)1-12
例題:下列函數(shù)(1)y=πx(2)y=2x-1(3)y=x(4)y=2-3x(5)y=x-1中,是一次函數(shù)的有()
(A)4個(gè)(B)3個(gè)(C)2個(gè)(D)1個(gè)
3、定義域:一般的,一個(gè)函數(shù)的自變量允許取值的范圍,叫做這個(gè)函數(shù)的定義域。(x的取值范圍)一次函數(shù)
1..自變量x和因變量y有如下關(guān)系:
y=kx+b(k為任意不為零實(shí)數(shù),b為任意實(shí)數(shù))則此時(shí)稱y是x的一次函數(shù)。特別的,當(dāng)b=0時(shí),y是x的正比例函數(shù)。即:y=kx(k為任意不為零實(shí)數(shù))
定義域:自變量的取值范圍,自變量的取值應(yīng)使函數(shù)有意義;要與實(shí)際有意義。
2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。
一次函數(shù)性質(zhì):
1在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b(k≠0)。
2一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。
3.函數(shù)不是數(shù),它是指某一變量過程中兩個(gè)變量之間的關(guān)系。
特別地,當(dāng)b=0時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。
這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。4、特殊位置關(guān)系
當(dāng)平面直角坐標(biāo)系中兩直線平行時(shí),其函數(shù)解析式中K值(即一次項(xiàng)系數(shù))相等當(dāng)平面直角坐標(biāo)系中兩直線垂直時(shí),其函數(shù)解析式中K值互為負(fù)倒數(shù)(即兩個(gè)K值的乘積為-1)應(yīng)用
一次函數(shù)y=kx+b的性質(zhì)是:(1)當(dāng)k>0時(shí),y隨x的增大而增大;(2)當(dāng)k二、比較x值或y值的大小
例2.已知點(diǎn)P1(x1,y1)、P2(x2,y2)是一次函數(shù)y=3x+4的圖象上的兩個(gè)點(diǎn),且y1>y2,則x1與x2的大小關(guān)系是()
A.x1>x2B.x10,且y1>y2。根據(jù)一次函數(shù)的性質(zhì)“當(dāng)k>0時(shí),y隨x的增大而增大”,得x1>x2。故選A。判斷函數(shù)圖象的位置
例3.一次函數(shù)y=kx+b滿足kb>0,且y隨x的增大而減小,則此函數(shù)的圖象不經(jīng)過()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限
解:由kb>0,知k、b同號(hào)。因?yàn)閥隨x的增大而減小,所以k一般來說,對(duì)于一個(gè)函數(shù),如果把自變量與函數(shù)的每對(duì)對(duì)應(yīng)值分別作為點(diǎn)的橫、縱坐標(biāo),那么坐標(biāo)平面內(nèi)由這些點(diǎn)組成的圖形,就是這個(gè)函數(shù)的圖象.
6、函數(shù)解析式:用含有表示自變量的字母的代數(shù)式表示因變量的式子叫做解析式。7、描點(diǎn)法畫函數(shù)圖形的一般步驟
第一步:列表(表中給出一些自變量的值及其對(duì)應(yīng)的函數(shù)值);
第二步:描點(diǎn)(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對(duì)應(yīng)的各點(diǎn));第三步:連線(按照橫坐標(biāo)由小到大的順序把所描出的各點(diǎn)用平滑曲線連接起來)。8、函數(shù)的表示方法
列表法:一目了然,使用起來方便,但列出的對(duì)應(yīng)值是有限的,不易看出自變量與函數(shù)之間的對(duì)應(yīng)規(guī)律。
解析式法:簡單明了,能夠準(zhǔn)確地反映整個(gè)變化過程中自變量與函數(shù)之間的相依關(guān)系,但有些實(shí)際問題中的函數(shù)關(guān)系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達(dá)兩個(gè)變量之間的函數(shù)關(guān)系。9、正比例函數(shù)及性質(zhì)
一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù).注:正比例函數(shù)一般形式y(tǒng)=kx(k不為零)①k不為零②x指數(shù)為1③b取零解析式:y=kx(k是常數(shù),k≠0)必過點(diǎn):(0,0)、(1,k)
走向:k>0時(shí),圖像經(jīng)過一、三象限;k0,y隨x的增大而增大;k一次函數(shù)y=kx+b的圖象是經(jīng)過(0,b)和(-,0)兩點(diǎn)的一條直線,我們稱它為直線y=kx+b,
它可以看作由直線y=kx平移|b|個(gè)單位長度得到.(當(dāng)b>0時(shí),向上平移;當(dāng)b0,圖象經(jīng)過第一、三象限;k0,圖象經(jīng)過第一、二象限;b0,y隨x的增大而增大;k0時(shí),將直線y=kx的圖象向上平移b個(gè)單位;當(dāng)b0.即橫坐標(biāo)或縱坐標(biāo)為0的點(diǎn).b經(jīng)過第一、二、三象限經(jīng)過第一、三、四象限經(jīng)過第一、三象限k>0圖象從左到右上升,y隨x的增大而增大經(jīng)過第一、二、四象限經(jīng)過第二、三、四象限經(jīng)過第二、四象限k0時(shí),向上平移;當(dāng)b
友情提示:本文中關(guān)于《八年級(jí)數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié)》給出的范例僅供您參考拓展思維使用,八年級(jí)數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié):該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請(qǐng)聯(lián)系我們及時(shí)刪除。