七年級數學上冊 知識總結 人教新課標版
七年級數學(上)知識點
人教版七年級數學上冊主要包含了有理數、整式的加減、一元一次方程、圖形的認識初步四個章節(jié)的內容.
第一章、有理數知識框架
二.知識概念1.有理數:
q(p,q為整數且p0)p(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統(tǒng)稱整數;
正分數、負分數統(tǒng)稱分數;整數和分數統(tǒng)稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;
正整數正有理數正分數有理數零負整數負有理數負分數正整數整數零有理數負整數正分數分數負分數②
(2)有理數的分類:①
2.數軸:數軸是規(guī)定了原點、正方向、單位長度的一條直線.3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;(2)相反數的和為0a+b=0a、b互為相反數.4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
a(a0)a0(a0)(a0)aaa(a0);a(a0)或(2)絕對值可表示為:絕對值的問題經常分類討論;
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.
16.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那么a的倒數是a;若ab=1a、b互為倒數;若ab=-1a、b互為負倒數.7.有理數加法法則:
(1)同號兩數相加,取相同的符號,并把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;(3)一個數與0相加,仍得這個數.8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b).10有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,并把絕對值相乘;(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
11有理數乘法的運算律:(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.
a即無意義12.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,0.
13.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數時:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;15.科學記數法:把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位.17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.
18.混合運算法則:先乘方,后乘除,最后加減.
本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運算法則解決實際問題.
體驗數學發(fā)展的一個重要原因是生活實際的需要.激發(fā)學生學習數學的興趣,教師培養(yǎng)學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創(chuàng)設情境,充分體現學生學習的主體性地位。
第二章、整式的加減一.知識框架
二.知識概念
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.
2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.3.多項式:幾個單項式的和叫多項式.
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。通過本章學習,應使學生達到以下學習目標:
1.理解并掌握單項式、多項式、整式等概念,弄清它們之間的區(qū)別與聯系。
2.理解同類項概念,掌握合并同類項的方法,掌握去括號時符號的變化規(guī)律,能正確地進行同類項的合并和去括號。在準確判斷、正確合并同類項的基礎上,進行整式的加減運算。3.理解整式中的字母表示數,整式的加減運算建立在數的運算基礎上;理解合并同類項、去括號的依據是分配律;理解數的運算律和運算性質在整式的加減運算中仍然成立。4.能夠分析實際問題中的數量關系,并用還有字母的式子表示出來。
在本章學習中,教師可以通過讓學生小組討論、合作學習等方式,經歷概念的形成過程,初步培養(yǎng)學生觀察、分析、抽象、概括等思維能力和應用意識。
第三章、一元一次方程知識框架
二.知識概念
1.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程.
2.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).
3.一元一次方程解法的一般步驟:整理方程去分母去括號移項
合并同類項系數化為1(檢驗方程的解).4.列一元一次方程解應用題:
(1)讀題分析法:多用于“和,差,倍,分問題”仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程.(2)畫圖分析法:多用于“行程問題”
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.
11.列方程解應用題的常用公式:
速度距離距離時間時間速度;
(1)行程問題:距離=速度時間
工效(2)工程問題:工作量=工效工時
工作量工作量工時工時工效;
比率(3)比率問題:部分=全體比率
部分部分全體全體比率;
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;售價成本1利潤率100%成本10,(5)商品價格問題:售價=定價折利潤=售價-成本,;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C
正方形=4a,
1S正方形=a2,S環(huán)形=π(R2-r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=3πR2h.
本章內容是代數學的核心,也是所有代數方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數學思想方法。
第四章、圖形的認識初步知識框架
本章的主要內容是圖形的初步認識,從生活周圍熟悉的物體入手,對物體的形狀的認識從感性逐步上升到抽象的幾何圖形.通過從不同方向看立體圖形和展開立體圖形,初步認識立體圖形與平面圖形的聯系.在此基礎上,認識一些簡單的平面圖形直線、射線、線段和角.本章書涉及的數學思想:1.分類討論思想。在過平面上若干個點畫直線時,應注意對這些點分情況討論;在畫圖形時,應注意圖形的各種可能性。
2.方程思想。在處理有關角的大小,線段大小的計算時,常需要通過列方程來解決。
3.圖形變換思想。在研究角的概念時,要充分體會對射線旋轉的認識。在處理圖形時應注意轉化思想的應用,如立體圖形與平面圖形的互相轉化。
4.化歸思想。在進行直線、線段、角以及相關圖形的計數時,總要劃歸到公式n(n-1)/2的具體運用上來。
擴展閱讀:七年級數學上冊 知識點總結 人教新課標版
初中數學知識點總結
一、基本知識
一、數與代數A、數與式:1、有理數有理數:①整數→正整數/0/負整數②分數→正分數/負分數數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。③一個數與0相加不變。減法:減去一個數,等于加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等于乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。2、實數無理數:無限不循環(huán)小數叫無理數平方根:①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合并同類項:①所含字母相同,并且相同字母的指數也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。③在合并同類項時,我們把同類項的系數相加,字母和字母的指數不變。4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。冪的運算:AM+AN=A(M+N)(AM)N=AMN
(A/B)N=AN/BN除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個分式等于乘以這個分式的倒數。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。B、方程與不等式1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。解一元一次方程的步驟:去分母,移項,合并同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數,并且未知數的項的最高系數為2的方程1)一元二次方程的二次函數的關系
大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解(1)配方法
利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步驟:(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diaota”,而△=b2-4ac,這里可以分為
3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;II當△=0時,一元二次方程有2個相同的實數根;
III當△B,A+C>B+C在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關于畫法,后面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;判定定理:到線段2端點距離相等的點在這線段的垂直平分線上角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質判定:1、對角線相等的菱形2、鄰邊相等的矩形二、基本定理
1、過兩點有且只有一條直線2、兩點之間線段最短
3、同角或等角的補角相等4、同角或等角的余角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理經過直線外一點,有且只有一條直線與這條直線平行8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行9、同位角相等,兩直線平行10、內錯角相等,兩直線平行11、同旁內角互補,兩直線平行12、兩直線平行,同位角相等13、兩直線平行,內錯角相等14、兩直線平行,同旁內角互補
15、定理三角形兩邊的和大于第三邊16、推論三角形兩邊的差小于第三邊
17、三角形內角和定理三角形三個內角的和等于180°18、推論1直角三角形的兩個銳角互余
19、推論2三角形的一個外角等于和它不相鄰的兩個內角的和20、推論3三角形的一個外角大于任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等23、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等24、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等25、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等27、定理1在角的平分線上的點到這個角的兩邊的距離相等
28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33、推論3等邊三角形的各角都相等,并且每一個角都等于60°
34、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)35、推論1三個角都相等的三角形是等邊三角形
36、推論2有一個角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38、直角三角形斜邊上的中線等于斜邊上的一半
39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42、定理1關于某條直線對稱的兩個圖形是全等形
43、定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44、定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上45、逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理如果三角形的三邊長a、b、c有關系a2+b2=c2,那么這個三角形是直角三角形48、定理四邊形的內角和等于360°49、四邊形的外角和等于360°
50、多邊形內角和定理n邊形的內角的和等于(n-2)×180°51、推論任意多邊的外角和等于360°
52、平行四邊形性質定理1平行四邊形的對角相等53、平行四邊形性質定理2平行四邊形的對邊相等54、推論夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3平行四邊形的對角線互相平分
56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58、平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60、矩形性質定理1矩形的四個角都是直角61、矩形性質定理2矩形的對角線相等
62、矩形判定定理1有三個角是直角的四邊形是矩形63、矩形判定定理2對角線相等的平行四邊形是矩形64、菱形性質定理1菱形的四條邊都相等
65、菱形性質定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66、菱形面積=對角線乘積的一半,即S=(a×b)÷267、菱形判定定理1四邊都相等的四邊形是菱形
568、菱形判定定理2對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角71、定理1關于中心對稱的兩個圖形是全等的
72、定理2關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分
73、逆定理如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱74、等腰梯形性質定理等腰梯形在同一底上的兩個角相等75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等79、推論1經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性質:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性質:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性質:如果a/b=c/d==m/n(b+d++n≠0),那么(a+c++m)/(b+d++n)=a/b
86、平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似91、相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93、判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)94、判定定理3三邊對應成比例,兩三角形相似(SSS)
95、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
96、性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比97、性質定理2相似三角形周長的比等于相似比
98、性質定理3相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101、圓是定點的距離等于定長的點的集合
102、圓的內部可以看作是圓心的距離小于半徑的點的集合103、圓的外部可以看作是圓心的距離大于半徑的點的集合104、同圓或等圓的半徑相等
105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109、定理不在同一直線上的三點確定一個圓。
110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧111、推論1
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條、谙业拇怪逼椒志經過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112、推論2圓的兩條平行弦所夾的弧相等113、圓是以圓心為對稱中心的中心對稱圖形
114、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116、定理一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120、定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角121、①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r
122、切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線123、切線的性質定理圓的切線垂直于經過切點的半徑124、推論1經過圓心且垂直于切線的直線必經過切點125、推論2經過切點且垂直于切線的直線必經過圓心
126、切線長定理從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理弦切角等于它所夾的弧對的圓周角
129、推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130、相交弦定理圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項133、推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等134、如果兩個圓相切,那么切點一定在連心線上
135、①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)④兩圓內切d=R-r(R>r)⑤兩圓內含d<R-r(R>r)136、定理相交兩圓的連心線垂直平分兩圓的公共弦137、定理把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138、定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓139、正n邊形的每個內角都等于(n-2)×180°/n
140、定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142、正三角形面積√3a/4a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長=d-(R-r)外公切線長=d-(R+r)
友情提示:本文中關于《七年級數學上冊 知識總結 人教新課標版》給出的范例僅供您參考拓展思維使用,七年級數學上冊 知識總結 人教新課標版:該篇文章建議您自主創(chuàng)作。
來源:網絡整理 免責聲明:本文僅限學習分享,如產生版權問題,請聯系我們及時刪除。