新北師大版八年級數(shù)學一次函數(shù)知識點總結(jié)+練習
第四章:一次函數(shù)知識點總結(jié)
基本概念
1、變量:在一個變化過程中可以取不同數(shù)值的量。常量:在一個變化過程中只能取同一數(shù)值的量。例題:在勻速運動公式svt中,v表示速度,t表示時間,s表示在時間t內(nèi)所走的路程,則變量是________,常量是_______。在圓的周長公式C=2πr中,變量是________,常量是_________.2、函數(shù):一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應(yīng),那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。*判斷Y是否為X的函數(shù),只要看X取值確定的時候,Y是否有唯一確定的值與之對應(yīng)1
例題:下列函數(shù)(1)y=πx(2)y=2x-1(3)y=(4)y=2-1-3x(5)y=x2-1中,是一次函數(shù)的
x有()
(A)4個(B)3個(C)2個(D)1個
3、定義域:一般的,一個函數(shù)的自變量允許取值的范圍,叫做這個函數(shù)的定義域。(x的取值范圍)一次函數(shù)
1..自變量x和因變量y有如下關(guān)系:
y=kx+b(k為任意不為零實數(shù),b為任意實數(shù))則此時稱y是x的一次函數(shù)。特別的,當b=0時,y是x的正比例函數(shù)。即:y=kx(k為任意不為零實數(shù))
定義域:自變量的取值范圍,自變量的取值應(yīng)使函數(shù)有意義;要與實際有意義。
2.當x=0時,b為函數(shù)在y軸上的截距。
一次函數(shù)性質(zhì):
1在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。
2一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。
3.函數(shù)不是數(shù),它是指某一變量過程中兩個變量之間的關(guān)系。
特別地,當b=0時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。4、特殊位置關(guān)系
當平面直角坐標系中兩直線平行時,其函數(shù)解析式中K值(即一次項系數(shù))相等當平面直角坐標系中兩直線垂直時,其函數(shù)解析式中K值互為負倒數(shù)(即兩個K值的乘積為-1)
應(yīng)用
一次函數(shù)y=kx+b的性質(zhì)是:(1)當k>0時,y隨x的增大而增大;(2)當kx2B.x10,且y1>y2。根據(jù)一次函數(shù)的性質(zhì)“當k>0時,y隨x的增大而增大”,得
x1>x2。故選A。判斷函數(shù)圖象的位置
例3.一次函數(shù)y=kx+b滿足kb>0,且y隨x的增大而減小,則此函數(shù)的圖象不經(jīng)過()
A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限
解:由kb>0,知k、b同號。因為y隨x的增大而減小,所以k
圖象法:形象直觀,但只能近似地表達兩個變量之間的函數(shù)關(guān)系。9、正比例函數(shù)及性質(zhì)
一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù).注:正比例函數(shù)一般形式y(tǒng)=kx(k不為零)①k不為零②x指數(shù)為1③b取零解析式:y=kx(k是常數(shù),k≠0)必過點:(0,0)、(1,k)
走向:k>0時,圖像經(jīng)過一、三象限;k0,y隨x的增大而增大;k0時,向上平移;當b0,y隨x的增大而增大;k0時,將直線y=kx的圖象向上平移b個單位;當b
將直線y=3x向下平移5個單位,得到直線;將直線y=-x-5向上平移5個單位,得到直線.
若直線yxa和直線yxb的交點坐標為(m,8),則ab____________.
已知函數(shù)y=3x+1,當自變量增加m時,相應(yīng)的函數(shù)值增加()A.3m+1B.3mC.mD.3m-111、一次函數(shù)y=kx+b的圖象的畫法.根據(jù)幾何知識:經(jīng)過兩點能畫出一條直線,并且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數(shù)的圖象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標軸的交點:(0,b),
b>0b0圖象從左到右上升,y隨x的增大而增大經(jīng)過第一、二、四象限經(jīng)過第二、三、四象限經(jīng)過第二、四象限k0時,向上平移;當b
(1)設(shè)一次函數(shù)的表達式(也叫解析式)為y=kx+b。(2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:
y1=kx1+b①和y2=kx2+b②(3)解這個二元一次方程,得到k,b的值。(4)最后得到一次函數(shù)的表達式。15、一元一次方程與一次函數(shù)的關(guān)系
任何一元一次方程到可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當某個一次函數(shù)的值為0時,求相應(yīng)的自變量的值.從圖象上看,相當于已知直線y=ax+b確定它與x軸的交點的橫坐標的值.
擴展閱讀:新北師大版數(shù)學八年級上冊一到七章知識點梳理(適合復(fù)習練習)
新北師大版八年級上數(shù)學第一章到第七章知識點總結(jié)
第一章勾股定理
【主要知識】
1、勾股定理:直角三角形的兩直角邊的平方和等于_______________。如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么________________
【注】①直角三角形;②找準斜邊、直角邊。
2、(1)勾股定理的逆定理:如果三角形的三邊長a,b,c滿足_____________,那么這個三角形是直角三角形。
(2)勾股數(shù):滿足abc的三個正整數(shù),稱為______________。3、勾股定理的應(yīng)用
1、在Rt△ABC中,∠C=90°,a=12,b=16,則c的長為()
A.26B.18C.20D.21
2、在下列數(shù)組中,能構(gòu)成一個直角三角形的有()①10,20,25;②10,24,25;③9,80,81;④8;15;17
A、4組B、3組C、2組D、1組
3、三角形的三邊長a,b,c滿足2ab=(a+b)-c,則此三角形是().A、鈍角三角形B、銳角三角形C、直角三角形D、等邊三角形4、下列各組數(shù):①0.3,0.4,0.5;②9,12,16;③4,5,6;④8a,15a,17a(a0);⑤9,40,41。其中是勾股數(shù)的有()組
A、1B、2C、3D、4
5、將Rt△ABC的三邊都擴大為原來的2倍,得△A’B’C’,則△A’B’C’為()A、直角三角形B、銳角三角形C、鈍角三角形D、無法確定6、在Rt△ABC中,∠C=90°,∠B=45°,c=10,則a的長為()
A:5B:10C:52D:5
7、已知a、b、c是三角形的三邊長,如果滿足(a6)b8c10的形狀是()
A:底與邊不相等的等腰三角形B:等邊三角形C:鈍角三角形D:直角三角形
2222220,則三角形
第二章實數(shù)
一、實數(shù)的概念及分類
1、實數(shù)的分類
正有理數(shù)
有理數(shù)零有限小數(shù)和無限循環(huán)小數(shù)實數(shù)負有理數(shù)正無理數(shù)
無理數(shù)無限不循環(huán)小數(shù)負無理數(shù)
2、無理數(shù):無限不循環(huán)小數(shù)叫做無理數(shù)。
在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:(1)開方開不盡的數(shù),如7,32等;
(2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如
π+8等;3(3)有特定結(jié)構(gòu)的數(shù),如0.1010010001等;(4)某些三角函數(shù)值,如sin60o等二、實數(shù)的倒數(shù)、相反數(shù)和絕對值
1、相反數(shù)
實數(shù)與它的相反數(shù)時一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應(yīng)的點關(guān)于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=b,反之亦成立。
2、絕對值
在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離,叫做該數(shù)的絕對值。(|a|≥0)。零的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。
3、倒數(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。
4、數(shù)軸
規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。
解題時要真正掌握數(shù)形結(jié)合的思想,理解實數(shù)與數(shù)軸的點是一一對應(yīng)的,并能靈活運用。5、估算
三、平方根、算數(shù)平方根和立方根
1、算術(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x就叫做a的算術(shù)平方根。特別地,0的算術(shù)平方根是0。
表示方法:記作“a”,讀作根號a。
性質(zhì):正數(shù)和零的算術(shù)平方根都只有一個,零的算術(shù)平方根是零。
2、平方根:一般地,如果一個數(shù)x的平方等于a,即x2=a,那么這個數(shù)x就叫做a的平方根(或二次方根)。
表示方法:正數(shù)a的平方根記做“a”,讀作“正、負根號a”。
性質(zhì):一個正數(shù)有兩個平方根,它們互為相反數(shù);零的平方根是零;負數(shù)沒有平方根。
開平方:求一個數(shù)a的平方根的運算,叫做開平方。注意a的雙重非負性:
a0a03、立方根
一般地,如果一個數(shù)x的立方等于a,即x3=a那么這個數(shù)x就叫做a的立方根(或三次方根)。
表示方法:記作3a
性質(zhì):一個正數(shù)有一個正的立方根;一個負數(shù)有一個負的立方根;零的立方根是零。注意:3a3a,這說明三次根號內(nèi)的負號可以移到根號外面。
四、實數(shù)大小的比較
1、實數(shù)比較大。赫龜(shù)大于零,負數(shù)小于零,正數(shù)大于一切負數(shù);數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;兩個負數(shù),絕對值大的反而小。
2、實數(shù)大小比較的幾種常用方法
(1)數(shù)軸比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。(2)求差比較:設(shè)a、b是實數(shù),
ab0ab,ab0ab,
ab0ab
(3)求商比較法:設(shè)a、b是兩正實數(shù),1ab;abaa1ab;1ab;bb(4)絕對值比較法:設(shè)a、b是兩負實數(shù),則abab。(5)平方法:設(shè)a、b是兩負實數(shù),則abab。五、算術(shù)平方根有關(guān)計算(二次根式)
1、含有二次根號“2、性質(zhì):
(1)(a)a(a0)
a(a0)
2(2)aa
22”;被開方數(shù)a必須是非負數(shù)。
2a(a0)
(3)abab(a0,b0)(abab(a0,b0))(4)
aa(a0,b0)(bbaba(a0,b0))b3、運算結(jié)果若含有“a”形式,必須滿足:(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式六、實數(shù)的運算
(1)六種運算:加、減、乘、除、乘方、開方(2)實數(shù)的運算順序
先算乘方和開方,再算乘除,最后算加減,如果有括號,就先算括號里面的。(3)運算律
加法交換律abba
加法結(jié)合律(ab)ca(bc)乘法交換律abba乘法結(jié)合律(ab)ca(bc)乘法對加法的分配律a(bc)abac
第三章、位置的確定和直角坐標系
一、在平面內(nèi),確定物體的位置一般需要兩個數(shù)據(jù)。二、平面直角坐標系及有關(guān)概念1、平面直角坐標系
在平面內(nèi),兩條互相垂直且有公共原點的數(shù)軸,組成平面直角坐標系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。
2、為了便于描述坐標平面內(nèi)點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(坐標軸上的點),不屬于任何一個象限。3、點的坐標的概念
對于平面內(nèi)任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應(yīng)的數(shù)a,b分別叫做點P的橫坐標、縱坐標,有序數(shù)對(a,b)叫做點P的坐標。
點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在后,中間有“,”分開,橫、縱坐標的位置不能顛倒。平面內(nèi)點的坐標是有序?qū)崝?shù)對,當ab時,(a,b)和(b,a)是兩個不同點的坐標。
平面內(nèi)點的與有序?qū)崝?shù)對是一一對應(yīng)的。4、不同位置的點的坐標的特征(1)、各象限內(nèi)點的坐標的特征點P(x,y)在第一象限x0,y0
點P(x,y)在第二象限x0,y0點P(x,y)在第三象限x0,y0點P(x,y)在第四象限x0,y0(2)、坐標軸上的點的特征
點P(x,y)在x軸上y0,x為任意實數(shù)點P(x,y)在y軸上x0,y為任意實數(shù)
點P(x,y)既在x軸上,又在y軸上x,y同時為零,即點P坐標為(0,0)即原點(3)、兩條坐標軸夾角平分線上點的坐標的特征
點P(x,y)在第一、三象限夾角平分線(直線y=x)上x與y相等點P(x,y)在第二、四象限夾角平分線上x與y互為相反數(shù)(4)、和坐標軸平行的直線上點的坐標的特征位于平行于x軸的直線上的各點的縱坐標相同。位于平行于y軸的直線上的各點的橫坐標相同。(5)、關(guān)于x軸、y軸或原點對稱的點的坐標的特征
點P與點p’關(guān)于x軸對稱橫坐標相等,縱坐標互為相反數(shù),即點P(x,y)關(guān)于x軸的對稱點為P’(x,-y)
點P與點p’關(guān)于y軸對稱縱坐標相等,橫坐標互為相反數(shù),即點P(x,y)關(guān)于y軸的對稱點為P’(-x,y)
點P與點p’關(guān)于原點對稱橫、縱坐標均互為相反數(shù),即點P(x,y)關(guān)于原點的對稱點為P’(-x,-y)
(6)、點到坐標軸及原點的距離點P(x,y)到坐標軸及原點的距離:
(1)點P(x,y)到x軸的距離等于y(2)點P(x,y)到y(tǒng)軸的距離等于x
22(3)點P(x,y)到原點的距離等于xy
三、坐標變化與圖形變化的規(guī)律:坐標(x,y)的變化x×a或y×ax×a,y×ax×(-1)或y×(-1)x×(-1),y×(-1)x+a或y+a圖形的變化被橫向或縱向拉長(壓縮)為原來的a倍放大(縮。樵瓉淼腶倍關(guān)于y軸或x軸對稱關(guān)于原點成中心對稱沿x軸或y軸平移a個單位x+a,y+a沿x軸平移a個單位,再沿y軸平移a個單
第四章、一次函數(shù)
一、函數(shù):
一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。二、自變量取值范圍
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負數(shù))、實際意義幾方面考慮。三、函數(shù)的三種表示法及其優(yōu)缺點
(1)關(guān)系式(解析)法
兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做關(guān)系式(解析)法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖象法
用圖象表示函數(shù)關(guān)系的方法叫做圖象法。四、由函數(shù)關(guān)系式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值
(2)描點:以表中每對對應(yīng)值為坐標,在坐標平面內(nèi)描出相應(yīng)的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。五、正比例函數(shù)和一次函數(shù)1、正比例函數(shù)和一次函數(shù)的概念
一般地,若兩個變量x,y間的關(guān)系可以表示成ykxb(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。
特別地,當一次函數(shù)ykxb中的b=0時(即ykx)(k為常數(shù),k0),稱y是x的正比例函數(shù)。
2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線3、一次函數(shù)、正比例函數(shù)圖像的主要特征:
一次函數(shù)ykxb的圖像是經(jīng)過點(0,b)的直線;正比例函數(shù)ykx的圖像是經(jīng)過原點(0,0)的直線。k的符號b的符號函數(shù)圖像y0x圖像特征k>0b>0圖像經(jīng)過一、二、三象限,y隨x的增大而增大。y0xy0xy0xb0圖像經(jīng)過一、二、四象限,y隨x的增大而減小K定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)kxb(k0)中的常數(shù)k和b。解這類問題的一般方法是待定系數(shù)法。
7、一次函數(shù)與一元一次方程的關(guān)系:
任何一個一元一次方程都可轉(zhuǎn)化為:kx+b=0(k、b為常數(shù),k≠0)的形式.而一次函數(shù)解析式形式正是y=kx+b(k、b為常數(shù),k≠0).當函數(shù)值為0時,即kx+b=0就與一元一次方程完全相同.
結(jié)論:由于任何一元一次方程都可轉(zhuǎn)化為kx+b=0(k、b為常數(shù),k≠0)的形式.所以解一元一次方程可以轉(zhuǎn)化為:當一次函數(shù)值為0時,求相應(yīng)的自變量的值.從圖象上看,這相當于已知直線y=kx+b確定它與x軸交點的橫坐標值.
第五章、二元一次方程組
1、二元一次方程
含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的整式方程叫做二元一次方程。2、二元一次方程的解
適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。3、二元一次方程組
含有兩個未知數(shù)的兩個一次方程所組成的一組方程,叫做二元一次方程組。4二元一次方程組的解
二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。5、二元一次方程組的解法
(1)代入(消元)法(2)加減(消元)法6、一次函數(shù)與二元一次方程(組)的關(guān)系:(1)一次函數(shù)與二元一次方程的關(guān)系:
直線y=kx+b上任意一點的坐標都是它所對應(yīng)的二元一次方程kx-y+b=0的解(2)一次函數(shù)與二元一次方程組的關(guān)系:
a1c1yx二元一次方程組a的解可看作兩個一次函數(shù)xbyc1111bb11axbyc222
ac和y2x12的圖象的交點。
b2b2
當函數(shù)圖象有交點時,說明相應(yīng)的二元一次方程組有解;當函數(shù)圖象(直線)平行即無交點時,說明相應(yīng)的二元一次方程組無解。一.填空題
1、方程中含有_個未知數(shù),并且__的次數(shù)是1,這樣的方程是二元一次方程。2、二元一次方程組的解題思想是______,方法有___,___法。3、將方程10-2(3-y)=3(2-x)變形,用含x的代數(shù)式表示y是_____。
--
4、已知3x2a+b3-5y3a2b+2=-1是關(guān)于x、y的二元一次方程,則(a+b)b=___。1
5、在公式s=v0t+at2中,當t=1時,s=13,當t=2時,s=42,則t=5時,s=_____。
26、解方程組2x3y123x4y17(1)(2)時,可以__________將x項的系數(shù)化相等,還可以
____________將y項的系數(shù)化為互為相反數(shù)。1
7、已知2x3m-2n+2ym+n與x5y4n+1是同類項,則m=_____,n=_____。
28、寫出2x+3y=12的所有非負整數(shù)解為_______________________________。3a-b2a+c2b+c
9、已知==,則a∶b∶c=_______________。
357
xmxn2m-6
10、已知是方程2x-3y=1的解,則代數(shù)式的值為_____。和3n-5ynym二.解答題
21、解下列方程組1、用代入法解4x3y5
2xy2
2、用代入法解3x5y9
2x7y6注意:二元一次方程組本章節(jié)的相關(guān)應(yīng)用題見書上每一章節(jié)的經(jīng)典題型。提高成績的學生可以查看我的其它文檔,二元一次方程組提高題型。
第六章、數(shù)據(jù)分析
1、刻畫數(shù)據(jù)的集中趨勢(平均水平)的量:平均數(shù)、眾數(shù)、中位數(shù)
2、平均數(shù)
(1)平均數(shù):一般地,對于n個數(shù)x1,x2,,xn,我們把個數(shù)的算術(shù)平均數(shù),簡稱平均數(shù),記為x。
(2)加權(quán)平均數(shù):3、眾數(shù)
一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。4、中位數(shù)
一般地,將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。
5、特別注意極差,方差和標準差的計算公式,以及這三個所能表示的實際意義!6,要求學生會使用餅狀圖計算數(shù)據(jù)和計算數(shù)據(jù)。根據(jù)圖形判斷數(shù)據(jù)的聚散程度!
第七章、平行線的證明
1.如圖所示,∠1=∠2,∠3=80°,那么∠4=__________.
1(x1x2xn)叫做這nn
2.如圖所示,∠ABC=36°40′,DE∥BC,DF⊥AB于點F,則∠D=__________.
3.如圖所示,AB∥CD,∠1=115°,∠3=140°,則∠2=__________.
4.如果一個三角形三個內(nèi)角的比是1∶2∶3,那么這個三角形是__________三角形.5.一個三角形的三個外角的度數(shù)比為2∶3∶4,則與此對應(yīng)的三個內(nèi)角的比為__________.
6.如圖所示,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠A=65°,則∠BFC=__________.
7.“同角的余角相等”的題設(shè)是__________,結(jié)論是__________.
8.如圖所示,AB∥EF∥CD,且∠B=∠1,∠D=∠2,則∠BED的度數(shù)為__________.
9.如果一個等腰三角形底邊上的高等于底邊的一半,那么這個等腰三角形的頂角等于__________.
10.過△ABC的頂點C作AB的垂線,如果該垂線將∠ACB分為40°和20°的兩個角,那么∠A,∠B中較大的角的度數(shù)是__________.
友情提示:本文中關(guān)于《新北師大版八年級數(shù)學一次函數(shù)知識點總結(jié)+練習》給出的范例僅供您參考拓展思維使用,新北師大版八年級數(shù)學一次函數(shù)知識點總結(jié)+練習:該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡(luò)整理 免責聲明:本文僅限學習分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。