高一數(shù)學(xué)必修四第一章第三章公式總結(jié)
高一數(shù)學(xué)必修四第一章第三章公式總結(jié)
平方關(guān)系:
①sin^2α+cos^2α=1②1+tan^2α=sec^2α③1+cot^2α=csc^2α積的關(guān)系:
①sinα=tanα×cosα②cosα=cotα×sinα③tanα=sinα×secα④cotα=cosα×cscα⑤secα=tanα×cscα⑥cscα=secα×cotα倒數(shù)關(guān)系:
①tanαcotα=1②sinαcscα=1③cosαsecα=1商的關(guān)系:
①sinα/cosα=tanα=secα/cscα②cosα/sinα=cotα=cscα/secα直角三角形ABC中,
角A的正弦值就等于角A的對邊比斜邊,余弦等于角A的鄰邊比斜邊正切等于對邊比鄰邊,[1]三角函數(shù)恒等變形公式兩角和與差的三角函數(shù):
①cos(α+β)=cosαcosβ-sinαsinβ②cos(α-β)=cosαcosβ+sinαsinβ③sin(α±β)=sinαcosβ±cosαsinβ④tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)⑤tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)三角和的三角函數(shù):
①sin(α+β+γ)=sinαcosβcosγ+cosαsinβcosγ+cosαcosβsinγ-sinαsinβsinγ②cos(α+β+γ)=cosαcosβcosγ-cosαsinβsinγ-sinαcosβsinγ-sinαsinβcosγ③tan(α+β+γ)=(tanα+tanβ+tanγ-tanαtanβtanγ)/(1-tanαtanβ-tanβtanγ-tanγtanα)輔助角公式:
Asinα+Bcosα=(A+B)^(1/2)sin(α+t),其中sint=B/(A+B)^(1/2),cost=A/(A+B)^(1/2),tant=B/AAsinα-Bcosα=(A+B)^(1/2)cos(α-t),tant=A/B倍角公式:
①sin(2α)=2sinαcosα=2/(tanα+cotα)②cos(2α)=cos(α)-sin(α)=2cos(α)-1=1-2sin(α)③tan(2α)=2tanα/[1-tan(α)]三倍角公式:
①sin(3α)=3sinα-4sin(α)=4sinαsin(60+α)sin(60-α)
②cos(3α)=4cos(α)-3cosα=4cosαcos(60+α)cos(60-α)③tan(3α)=tanatan(π/3+a)tan(π/3-a)半角公式:
①sin(α/2)=±√((1-cosα)/2)②cos(α/2)=±√((1+cosα)/2)③tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα降冪公式
①sin(α)=(1-cos(2α))/2=versin(2α)/2②cos(α)=(1+cos(2α))/2=covers(2α)/2③tan(α)=(1-cos(2α))/(1+cos(2α))萬能公式:
①sinα=2tan(α/2)/[1+tan(α/2)]②cosα=[1-tan(α/2)]/[1+tan(α/2)]③tanα=2tan(α/2)/[1-tan(α/2)]積化和差公式:
①sinαcosβ=(1/2)[sin(α+β)+sin(α-β)]②cosαsinβ=(1/2)[sin(α+β)-sin(α-β)]③cosαcosβ=(1/2)[cos(α+β)+cos(α-β)]④sinαsinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化積公式:
①sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]②sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]③cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]④cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]推導(dǎo)公式
①tanα+cotα=2/sin2α②tanα-cotα=-2cot2α③1+cos2α=2cosα④1-cos2α=2sinα⑤1+sinα=(sinα/2+cosα/2)其他:
①sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0②cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0③sin(α)+sin(α-2π/3)+sin(α+2π/3)=3/2④tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
⑤cosx+cos2x+...+cosnx=[sin(n+1)x+sinnx-sinx]/2sinx
誘導(dǎo)公式公式一:
設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
①sin(2kπ+α)=sinα②cos(2kπ+α)=cosα③tan(2kπ+α)=tanα④cot(2kπ+α)=cotα公式二:
設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
①sin(π+α)=-sinα②cos(π+α)=-cosα③tan(π+α)=tanα④cot(π+α)=cotα公式三:
任意角α與-α的三角函數(shù)值之間的關(guān)系:
①in(-α)=-sinα②cos(-α)=cosα③tan(-α)=-tanα④cot(-α)=-cotα公式四:
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
①sin(π-α)=sinα②cos(π-α)=-cosα③tan(π-α)=-tanα④cot(π-α)=-cotα公式五:
利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
①sin(2π-α)=-sinα②cos(2π-α)=cosα③tan(2π-α)=-tanα④cot(2π-α)=-cotα公式六:
π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
①sin(π/2+α)=cosα②cos(π/2+α)=-sinα③tan(π/2+α)=-cotα④cot(π/2+α)=-tanα①sin(π/2-α)=cosα②cos(π/2-α)=sinα③tan(π/2-α)=cotα④cot(π/2-α)=tanα
①sin(3π/2+α)=-cosα②cos(3π/2+α)=sinα③tan(3π/2+α)=-cotα④cot(3π/2+α)=-tanα①sin(3π/2-α)=-cosα②cos(3π/2-α)=-sinα③tan(3π/2-α)=cotα④cot(3π/2-α)=tanα(以上k∈Z)
正弦定理是指在三角形中,各邊和它所對的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R.(其中R為外接圓的半徑)
余弦定理是指三角形中任何一邊的平方等于其它兩邊的平方和減去這兩邊與它們夾角的余弦的積的2倍,即a^2=b^2+c^2-2bccosA
角A的對邊于斜邊的比叫做角A的正弦,記作sinA,即sinA=角A的對邊/斜邊
斜邊與鄰邊夾角asin=y/r無論y>x或y≤x無論a多大多小可以任意大小正弦的最大值為1最小值為-1
三角恒等式
對于任意非直角三角形中,如三角形ABC,總有tanA+tanB+tanC=tanAtanBtanC
證明:已知(A+B)=(π-C),所以tan(A+B)=tan(π-C),則(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC,
類似地,我們同樣也可以求證:當(dāng)α+β+γ=nπ(n∈Z)時,總有tanα+tanβ+tanγ=tanαtanβtanγ
擴(kuò)展閱讀:高一數(shù)學(xué)必修四(公式總結(jié))
高一數(shù)學(xué)公式總結(jié)
復(fù)習(xí)指南
1.注重基礎(chǔ)和通性通法
在平時的學(xué)習(xí)中,應(yīng)立足教材,學(xué)好用好教材,深入地鉆研教材,挖掘教材的潛力,注意避免眼高手低,偏重難題,搞題海戰(zhàn)術(shù),輕視基礎(chǔ)知識和基本方法的不良傾向,當(dāng)然注重基礎(chǔ)和通性通法的同時,應(yīng)注重一題多解的探索,經(jīng)常利用變式訓(xùn)練和變式引申來提高自己的分析問題、解決問題的能力。
2.注重思維的嚴(yán)謹(jǐn)性
平時學(xué)習(xí)過程中應(yīng)避免只停留在“懂”上,因?yàn)槁牰瞬灰欢〞,會了不一定對,對了不一定美。即?shù)學(xué)學(xué)習(xí)的五種境界:聽懂會對美。我們今后要在第五種境界上下功夫,每年的高考結(jié)束,結(jié)果下來都可以發(fā)現(xiàn)我們宿遷市的考生與南方的差距較大,這就是其中的一個原因。
另外我們的學(xué)生的解題的素養(yǎng)不夠,比如僅僅一點(diǎn)“規(guī)范答題”問題,我們老師也強(qiáng)調(diào)很多遍,但作為學(xué)生的你們又有幾人能夠聽進(jìn)去!
希望大家還是能夠做到我經(jīng)常所講的做題的“三觀”:1.審題觀2.思想方法觀3.步驟清晰、層次分明觀3.注重應(yīng)用意識的培養(yǎng)
注重培養(yǎng)用數(shù)學(xué)的眼光觀察和分析實(shí)際問題,提高數(shù)學(xué)的興趣,增強(qiáng)學(xué)好數(shù)學(xué)的信心,達(dá)到培養(yǎng)創(chuàng)新精神和實(shí)踐能力的目的。4.培養(yǎng)學(xué)習(xí)與反思的整合
建構(gòu)主義學(xué)習(xí)觀認(rèn)為知識并不是簡單的由教師或者其他人傳授給學(xué)生的,而只能由學(xué)生依據(jù)自身已有的知識、經(jīng)驗(yàn),主動地加以建構(gòu)。學(xué)習(xí)是一個創(chuàng)造的過程,一個批判、選擇、和存疑的過程,一個充滿想象、探索和體驗(yàn)的過程。你不想學(xué),老師強(qiáng)行的逼迫是不容易的或者說是作用不大,俗話說“強(qiáng)扭的瓜不甜”嘛!數(shù)學(xué)學(xué)習(xí)不但要對概念、結(jié)論和技能進(jìn)行記憶,積累和模仿,而且還要動手實(shí)踐,自主探索,并且在獲得知識的基礎(chǔ)上進(jìn)行反思和修正。(這也就是我們經(jīng)常將讓大家一定要好好預(yù)習(xí),養(yǎng)成自學(xué)的好習(xí)慣。)記得有一位中科院的教授曾經(jīng)給“科學(xué)”下了一個定義:科學(xué)就是以懷疑和接納新知識作為進(jìn)步的標(biāo)準(zhǔn)的一門學(xué)問,仔細(xì)想來確實(shí)很有道理!
所以我們在平時學(xué)習(xí)中要注意反思,只有這樣才能使內(nèi)容得到鞏固,知識的得到拓展,能力得到提高,思維得到優(yōu)化,創(chuàng)新能力得到真正的發(fā)展,希望大能夠讓數(shù)學(xué)反思成為我們的自然的習(xí)慣!
5.注重平時的聽課效率
聽課效率高不僅可以讓自己深刻的理解知識,而且事半功倍,可以省好多的時間。而有些同學(xué)則認(rèn)為上課時聽不到什么,索性就不聽,抓緊課堂上的每一點(diǎn)時間做題,多做幾道題心里就踏實(shí)。這種認(rèn)識是不科學(xué)的,想象如果上課沒有用的話,國家還開辦學(xué)校干嘛?只要印刷課本就足夠了,學(xué)生買了書就可以自己學(xué)習(xí)到時候參加考試就行了。
想想好多東西還是在課堂上聆聽的,聽聽老師對問題的分析和解題技巧,老師是如何想到的,與自己預(yù)習(xí)時的想法比較。課堂上記下比較重要的東西,更重要的是跟著老師的思路,注重老師對題目的分析過程。課后寧愿花時間去整理筆記,因?yàn)檎砉P記實(shí)際上是一種知識的整合和再創(chuàng)造!回憶課堂上老師是怎樣講的,自己在整理時有比較好的想法,就記下來,抓住自己思維的火花,因?yàn)檩^為深刻的思維火花往往是稍縱即逝的。
在這里我再一次強(qiáng)調(diào)聽課要做到“五得”
聽得懂想得通記得住說得出用得上6.注重思想方法的學(xué)習(xí)
學(xué)習(xí)數(shù)學(xué)重再學(xué)習(xí)數(shù)學(xué)思想方法,它是數(shù)學(xué)知識在更高層次上的抽象和概括,它蘊(yùn)含于數(shù)學(xué)知識發(fā)生、發(fā)展和應(yīng)用的過程中,也是歷年來高考數(shù)學(xué)命題的特點(diǎn)之一。不少學(xué)者認(rèn)為:
“傳授知識”是數(shù)學(xué)的一種境界,加上“能力培養(yǎng)”是稍高的境界,再加上“方法滲透”是較高的境界,而再加上“提高修養(yǎng)(指數(shù)學(xué)文化和非智力引力的介入)”則是最高境界。作為學(xué)生一定要深刻理解數(shù)學(xué)的思想方法,它是數(shù)學(xué)的精髓,只有運(yùn)用數(shù)學(xué)思想方法,才能把數(shù)學(xué)的知識和技能轉(zhuǎn)化為分析問題和解決問題的能力,才能體現(xiàn)數(shù)學(xué)的學(xué)科特點(diǎn),才能形成數(shù)學(xué)素養(yǎng)。即使在以后我們走上社會,在工作崗位上我們的這種數(shù)學(xué)素養(yǎng)就會內(nèi)化為自身的較深的修養(yǎng),從而使得自己的氣質(zhì)得以升華,它對于我們今后的做人和處事有很大的指導(dǎo)意義,再加上我們的人文素養(yǎng)就可以造就自己哲學(xué)修養(yǎng)。
真心希望我的這些忠告能夠?qū)δ憬窈蟮膶W(xué)習(xí)有所幫助,果真如此,也就聊以欣慰了!
基本三角函數(shù)
Ⅰ2ⅠⅡⅢⅣⅡ終邊落在x軸上的角的集合:
2Ⅰ、ⅢⅠ、ⅢⅡ、ⅣⅡ、Ⅳ222,z終邊落在y軸上的角的集合:
,z終邊落在坐標(biāo)軸上的角的集合:,z
22基本三角函數(shù)符號記“一全,二正弦,三切,四1180弧度憶:112Slrr余弦”221801弧度度180弧度lr360度2弧度.tancot1倒數(shù)關(guān)系:SinCsc1正六邊形對角線上對應(yīng)的三角函數(shù)之積為1
CosSectan21Sec2平方關(guān)系:Sin2Cos2三個倒立三角形上底邊對應(yīng)三角函數(shù)的平方何等與對1邊對應(yīng)的三角函數(shù)的平方1Cot2Csc2乘積關(guān)系:SintanCos,頂點(diǎn)的三角函數(shù)等于相鄰的點(diǎn)對應(yīng)的函數(shù)乘積
Ⅲ誘導(dǎo)公式終邊相同的角的三角函數(shù)值相等
Sin2kSin,kz
Cos2kCos,kztan2ktan,kz角與角關(guān)于x軸對稱
SinSin
CosCostantanSinSinCosCostantan角與角關(guān)于y軸對稱
角與角關(guān)于原點(diǎn)對稱SinSinCosCostantan
角2與角關(guān)于yx對稱SinCosSinCosSinCos2tan2CotSecCscCosSinCosSin22tancot2tancot2上述的誘導(dǎo)公式記憶口訣:“奇變偶不變,符號看象限”
Ⅳ周期問題
2yACosx,A0,0,T
yASinx,A0,0,TyACosx,A0,0,TyASinxb,A0,0,b0,T2yASinx,A0,0,T2
2yACosxb,A0,0,b0,TyAcotx,A0,0,T
yAtanx,A0,0,T
yAcotx,A0,0,TⅤ三角函數(shù)的性質(zhì)
yAtanx,A0,0,T性質(zhì)定義域值域周期性奇偶性單調(diào)性ySinxRyCosxR1,12奇函數(shù)1,12偶函數(shù)2k,2k,kz,增函數(shù)2k,2k,kz,增函數(shù)222k,2k,kz,減函數(shù)32k,2k,kz,減函數(shù)22對稱中心k,0,kzxkk,0,kz2xk,kz54對稱軸圖像2,kz53423yy21x1-8-2π-6-3π/2-4-π-2-π/2Oπ/22π43π/262π8-π/2-83π/2O-1x6-1-2π-6-3π/2-4-π-2π/22π42π8-2-2-3-3-4-4-5-5-6性質(zhì)定義域ytanxycotxxx,z2R奇函數(shù)xx,zR奇函數(shù)值域周期性奇偶性單調(diào)性k,k,kz,增函數(shù)22k,k,kz,增函數(shù)k,0,kz2對稱中心對稱軸k,0,kz無無圖像10yy8642x-15-10-5-3π/2-π-π/2Oπ/2π3π/251015-20x-4-6-8-10怎樣由ySinx變化為yASinxk?
振幅變化:ySinxyASinx左右伸縮變化:
yASinx左右平移變化yASin(x)上下平移變化yASin(x)k
Ⅵ平面向量共線定理:一般地,對于兩個向量a,a0,b,如果有
一個實(shí)數(shù),使得ba,a0,則b與a是共線向量;反之如果b與a是共線向量那么又且只有一個實(shí)數(shù),使得ba.
Ⅶ線段的定比分點(diǎn)
點(diǎn)P分有向線段P1P2所成的比的定義式P1PPP2.線段定比分點(diǎn)坐標(biāo)公式線段定比分點(diǎn)向量公式xx2x11OP1OP2.OPy1y2y11當(dāng)1時當(dāng)1時
線段中點(diǎn)坐標(biāo)公式線段中點(diǎn)向量公式x1x2x2OP1OP2.OPyy1y222
Ⅷ向量的一個定理的類似推廣向量共線定理:baa0推廣
平面向量基本定理:aee,其中e1,e2為該平面內(nèi)的兩個1122不共線的向量推廣
a1e12e23e3,空間向量基本定理:其中e,e,e為該空間內(nèi)的三個123不共面的向量Ⅸ一般地,設(shè)向量ax1,y1,bx2,y2且a0,如果a∥b那么x1y2x2y10反過來,如果x1y2x2y10,則a∥b.
Ⅹ一般地,對于兩個非零向量a,b有ababCos,其中θ為兩向量的夾角。
Cosababx1x2y1y2x12y12x22y22
特別的,aaaa或者aⅪ
22aa
如果ax1,y1,bx2,y2且a0,則abx1x2y1y2特別的,abx1x2y1y20Ⅻ若正n邊形A1A2An的中心為O,則OA1OA2OAn0
三角形中的三角問題
ABCABC,ABC,-22222ABCSinABSinCCosABCosCSinCos22
ABCCosSin22正弦定理:
abcabc2RSinASinBSinCSinASinBSinC余弦定理:
a2b2c22bcCosA,b2a2c22acCosBcab2abCosC2b2c2a2a2c2b2CosA,CosB2bc2ac變形:222abcCosC2abtanAtanBtanCtanAtanBtanC
三角公式以及恒等變換
兩角的和與差公式:SinSinCosCosSin,S()
SinSinCosCosSin,S()CosCosCosSinSin,C()CosCosCosSinSin,C()
tantan,T()1tantantantantan,T()1tantantan二倍角公式:
Sin22SinCos2tantantan1tantan變形:tantantan1tantan
tantantantantantan其中,,為三角形的三個內(nèi)角Cos22Cos112SinCosSintan22tan1tan2222
半角公式:
Sin21Cos21CosCos222tan21CosSin1Cos
1Cos1CosSin降冪擴(kuò)角公式:Cos21Cos2,Sin21Cos2
21SinSin21積化和差公式:CosSinSinSin
21CosCosCosCos21SinSinCosCos2SinCosSinSin2SinCos22SS2SCSinSin2CosSin和差化積公式:22(SS2CS)
CC2CCCosCos2CosCosCC2SS22CosCos2SinSin2tanSin21tan22萬能公式:
1tan2Cos1tan222(STC)
tan2tan2
1tan2233三倍角公式:Sin33Sin4Sintan33tantan
13tan2Cos34Cos33Cos“三四立,四立三,中間橫個小扁擔(dān)”
1.yaSinbCosbaa2.yaCosbSina2b2Sin其中,tanbba2b2Cos其中,tanab3.yaSinbCosa2b2Sin其中,tanaaa2b2Cos其中,tanba2b2Sin其中,tan4.yaCosbSina2b2Sinabba2b2Cos其中,tana注:不同的形式有不同的化歸,相同的形式也有不同的化歸,進(jìn)而可以a2b2Sin其中,tan求解最值問題.不需要死記公式,只要記憶1.的推導(dǎo)即表達(dá)技巧,其它的就可以直接寫出.一般是表達(dá)式第一項(xiàng)是正弦的就用兩角和與差的正弦來靠,第一項(xiàng)是余弦的就用兩角和與差的與弦來靠.比較容易理解和掌握.tantan,T()補(bǔ)充:1.由公式1tantantantantan,T()1tantantan
可以推導(dǎo):當(dāng)在有些題目中應(yīng)用廣泛。
4時,z,1tan1tan2
2.tantantantantantan3.柯西不等式(ab)(cd)(acbd),a,b,c,dR.
222補(bǔ)充
1.常見三角不等式:(1)若x(0,(2)若x(0,2),則sinxxtanx.
),則1sinxcosx2.(3)|sinx||cosx|1.
22.sin()sin()sin2sin2(平方正弦公式);
cos()cos()cos2sin2.
asinbcos=a2b2sin()(輔助角所在象限由點(diǎn)(a,b)的象限決
b定,tan).
a3.三倍角公式:sin33sin4sin4sinsin(3)sin().33cos34cos33cos4coscos()cos().333tantan3tan3tantan()tan().213tan334.三角形面積定理:(1)S111ahabhbchc(ha、hb、hc分別表示a、b、c邊222上的高).
(2)S111absinCbcsinAcasinB.222221(|OA||OB|)(OAOB).(3)SOAB2CAB2C22(AB).222k5.三角形內(nèi)角和定理在△ABC中,有
ABCC(AB)26.正弦型函數(shù)yAsin(x)的對稱軸為x(kZ);對稱中心
為(k,0)(kZ);類似可得余弦函數(shù)型的對稱軸和對稱中心;〈三〉易錯點(diǎn)提示:1.在解三角問題時,你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、
余弦函數(shù)的有界性了嗎?2.在三角中,你知道1等于什么嗎?(
這些統(tǒng)稱為1的代換)常數(shù)“1”
的種種代換有著廣泛的應(yīng)用.
3.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角.異角化同角,異名化同名,高次化低次)4.你還記得在弧度制下弧長公式和扇形面積公式嗎?()
友情提示:本文中關(guān)于《高一數(shù)學(xué)必修四第一章第三章公式總結(jié)》給出的范例僅供您參考拓展思維使用,高一數(shù)學(xué)必修四第一章第三章公式總結(jié):該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。