国产精品色无码视频,国产av毛片影院精品资源,亚洲人成网站77777·c0m,囯产av无码片毛片一级,夜夜操www99视频,美女白嫩胸交在线观看,亚洲a毛片性生活

薈聚奇文、博采眾長、見賢思齊
當(dāng)前位置:公文素材庫 > 公文素材 > 范文素材 > 集合教案(精選多篇)

集合教案(精選多篇)

網(wǎng)站:公文素材庫 | 時間:2019-05-17 09:37:52 | 移動端:集合教案(精選多篇)

第一篇:25矛和盾的集合教案

語文備課大師 xiexingcun.com 目錄式免費主題備課平臺!

25《矛和盾的集合》教案

教學(xué)目標(biāo)

1.認(rèn)識“矛、盾”等6個生字,會寫“矛、盾”等14個生字。能正確讀、寫“集合、招架”等16個詞語。能根據(jù)自己的水平用一個詞或幾個詞造句、寫話。

2.正確、流利、有感情地朗讀課文,摘抄課文中你認(rèn)為好的詞語。

3.初步了解用事實來說明道理的表達(dá)方法。

4.培養(yǎng)學(xué)生針對課文內(nèi)容提出有價值的問題的能力。

5.繼續(xù)學(xué)習(xí)默讀課文。讀懂本課內(nèi)容,結(jié)合生活經(jīng)驗理解“誰善于把別人的長處集于一身,誰就會是勝利者”的道理。

教學(xué)重點、難點

1.引導(dǎo)學(xué)生了解發(fā)明家是怎樣發(fā)明坦克的,即把盾的自衛(wèi)和矛的進攻的優(yōu)點合二為一的過程,是教學(xué)的重點。

2.理解、體會由坦克發(fā)明引發(fā)的道理,是教學(xué)的難點。

教學(xué)方法:觀察法談?wù)摲ǎ首x指導(dǎo)法

教學(xué)準(zhǔn)備小黑板

一、啟發(fā)談話,揭示課題

1、師:(出示課文中的插圖)請認(rèn)真觀察這幅圖,圖上發(fā)明家手持矛和盾,正在與朋友比賽,從圖上看,你知道哪個是矛?哪個是盾?說說“矛”和“盾”的樣子和作用。教師根據(jù)學(xué)生回答板書(范寫2個字):

矛進攻

盾自衛(wèi)

“盾”是一個象形字,一個人的手舉著盾牌,以盾蔽目(身體) )大家看看這個“集”字,上面的念“隹”,是指一種短尾巴的鳥。下面是個“木”,誰能猜一猜它的意思?)

師:如果我們把矛和盾的這兩種相對立的兵器集合在一起,那會是怎樣的情形呢板書課題:矛和盾的集合。齊讀課題。

師:讀了課題,你有哪些問題呢?根據(jù)學(xué)生反饋板書問題要點。

如:矛和盾為什么要集合?怎么集合的?結(jié)果怎么樣?

二、初讀課文,掃清障礙

1、師:矛和盾這兩種兵器怎么集合?集合結(jié)果會怎樣?請同學(xué)們仔細(xì)讀讀故事吧。注意讀準(zhǔn)字音,讀通句子。

學(xué)生自由讀課文。

三、檢查預(yù)習(xí),質(zhì)疑問難

1、小黑板出示詞語:先由學(xué)生領(lǐng)讀到搶讀到憶讀競賽,重點糾正要強調(diào)讀音的生字是“戳、履”,熟讀的新詞有:

2、六句帶有生字的句子(1)矛(máo)和盾(dǜn)的集合;

(2)發(fā)明家手持(chí)矛和盾,與朋友比賽。

(3)對方的矛如雨點般(bān)向他刺來;

(4)敵人就一槍也戳(chuō)不到我了;

(5)自己卻變成了只能縮在殼里保命的蝸(m.hmlawpc.com)

例如,不等式 的解集可以表示為: 或

所有直角三角形的集合可以表示為:

注:(1)在不致混淆的情況下,可以省去豎線及左邊部分。

如:{直角三角形};{大于104的實數(shù)}

(2)錯誤表示法:{實數(shù)集};{全體實數(shù)}

3、文氏圖:用一條封閉的曲線的內(nèi)部來表示一個集合的方法。

注:何時用列舉法?何時用描述法?

(1)有些集合的公共屬性不明顯,難以概括,不便用描述法表示,只能用列舉法。

如:集合

(2)有些集合的元素不能無遺漏地一一列舉出來,或者不便于、不需要一一列舉出來,常用描述法。如:集合 ;集合{1000以內(nèi)的質(zhì)數(shù)}

注:集合 與集合 是同一個集合

嗎?

答:不是。

集合 是點集,集合 =是數(shù)集。

(三) 有限集與無限集

1、有限集:含有有限個元素的集合。

2、無限集:含有無限個元素的集合。

3、空集:不含任何元素的集合。記作φ,如:

練習(xí)題:

1、p6練習(xí)

2、用描述法表示下列集合

①{1,4,7,10,13}

②{-2,-4,-6,-8,-10}

3、用列舉法表示下列集合

①{x∈n|x是15的約數(shù)}{1,3,5,15}

②{(x,y)|x∈{1,2},y∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}

注:防止把{(1,2)}寫成{1,2}或{x=1,y=2}

④{-1,1}

⑤{(0,8)(2,5),(4,2)}

{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(

三、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1.集合的有關(guān)概念

(集合、元素、屬于、不屬于、有限集、無限集、空集)

2.集合的表示方法

(列舉法、描述法、文氏圖共3種)

3.常用數(shù)集的定義及記法

四、課后作業(yè) :教材p7習(xí)題1.1

4,4)}

第三篇:高中數(shù)學(xué) 必修1 集合教案

學(xué)習(xí)周報專業(yè)輔導(dǎo)學(xué)習(xí)

集合(第1課時)

一、知識目標(biāo):①內(nèi)容:初步理解集合的基本概念,常用數(shù)集,集合元素的特

征等集合的基礎(chǔ)知識。

②重點:集合的基本概念及集合元素的特征

③難點:元素與集合的關(guān)系

④注意點:注意元素與集合的關(guān)系的理解與判斷;注意集合中元

素的基本屬性的理解與把握。

二、能力目標(biāo):①由判斷一組對象是否能組成集合及其對象是否從屬已知集合,

培養(yǎng)分析、判斷的能力;

②由集合的學(xué)習(xí)感受數(shù)學(xué)的簡潔美與和諧統(tǒng)一美。

三、教學(xué)過程:

。┣榫霸O(shè)置:

軍訓(xùn)期間,我們經(jīng)常會聽到教官在高喊:(x)的全體同學(xué)集合!聽到口令,咱們班的全體同學(xué)便會從四面八方聚集到教官的身邊,而那些不是咱們班的學(xué)生便會自動走開。這樣一來教官的一聲“集合”(動詞)就把“某些指定的對象集在一起”了。數(shù)學(xué)中的“集合”這一概念并不是教官所用的動詞意義下的概念,而是一個名詞性質(zhì)的概念,同學(xué)們在教官的集合號令下形成的整體即是數(shù)學(xué)中的集合的涵義。

ⅱ)探求與研究:

① 一般地,某些指定的對象集在一起就成為一個集合,也簡稱集。

問題:同學(xué)們能不能舉出一些集合的例子呢?(板書學(xué)生們所舉出的一些例子)

② 為了明確地告訴大家,是哪些“指定的對象”被集在了一起并作為一個

整體來看待,就用大括號{ }將這些指定的對象括起來,以示它作為一個

整體是一個集合,同時為了討論起來更方便,又常用大寫的拉丁字母a、

b、c??來表示不同的集合,如同學(xué)們剛才所舉的各例就可分別記

為??(板書)

另外,我們將集合中的“每個對象”叫做這個集合的元素,并用小寫字

母a、b、c??(或x1、x2、x3??)表示

同學(xué)口答課本p5練習(xí)中的第1大題

③ 分析剛才同學(xué)們所舉出的集合例子,引出:

對某具體對象a與集合a,如果a是集合a中的元素,就說a屬于集合

a,記作a∈a;如果a不是集合a的元素,就說a不屬于集合a,記作

a?a

④ 再次分析同學(xué)們剛才所舉出的一些集合的例子,師生共同討論得出結(jié)論:

集合中的元素具有確定性、互異性和無序性。

然后請同學(xué)們分別閱讀課本p5和p40上相關(guān)的內(nèi)容。

⑤ 在數(shù)學(xué)里使用最多的集合當(dāng)然是數(shù)集,請同學(xué)們閱讀課本p4上與數(shù)集有

關(guān)的內(nèi)容,并思考:常用的數(shù)集有哪些?各用什么專用字母來表示?你

能分別說出各數(shù)集中的幾個元素嗎?(板書n、z、q、r、n*(或n+))

注意:數(shù)0是自然數(shù)集中的元素。這與同學(xué)們腦子里原來的自然數(shù)就是

1、2、3、4??的概念有所不同

同學(xué)們完成課本p5練習(xí)第2大題。

http://.cn

學(xué)習(xí)周報專業(yè)輔導(dǎo)學(xué)習(xí)

注意:符號“∈”、“?”的書寫規(guī)范化

練習(xí): (一)下列指定的對象,能構(gòu)成一個集合的是

① 很小的數(shù)

② 不超過30的非負(fù)實數(shù)

③ 直角坐標(biāo)平面內(nèi)橫坐標(biāo)與縱坐標(biāo)相等的點

④ π的近似值

⑤ 高一年級優(yōu)秀的學(xué)生

⑥ 所有無理數(shù)

⑦ 大于2的整數(shù)

⑧ 正三角形全體

a、②③④⑥⑦⑧b、②③⑥⑦⑧c、②③⑥⑦

d、②③⑤⑥⑦⑧

(二)給出下列說法:

① 較小的自然數(shù)組成一個集合

② 集合{1,-2,,π}與集合{π,-2,,1}是同一個集合

③ 某同學(xué)的數(shù)學(xué)書和物理書組成一個集合

④ 若a∈r,則a?q

⑤ 已知集合{x,y,z}與集合{1,2,3}是同一個集合,則x=1,y=2,

z=3

其中正確說法個數(shù)是()

a、1個b、2個c、3個d、4個

(三)已知集合a={a+2,(a+1)2,a2+3a+3},且1∈a,求實數(shù)a 的值

ⅲ)回顧與總結(jié):

1. 集合的概念

2. 元素的性質(zhì)

3.幾個常用的集合符號

ⅳ)作業(yè):①p7習(xí)題1.1第1大題

②閱讀課本并理解概念

課后反思:這節(jié)課由于開學(xué)典禮的影響,沒有來得及全部上完。等待明天繼續(xù)上

然后與老教師產(chǎn)生一節(jié)課的差距?傮w來看,比昨天稍微好一點,語氣上連貫了

些,但是還沒有理清自己上課的思路,到了課堂上原本的準(zhǔn)備有些忘記了。

http://.cn

第四篇:高一數(shù)學(xué)教案:集合的表示方法

1.1.2集合的表示方法

教學(xué)目標(biāo):掌握集合的表示方法,能選擇自然語言、圖形語言、集合語言描述不同的問題.

教學(xué)重點、難點:用列舉法、描述法表示一個集合.

教學(xué)過程:

一、復(fù)習(xí)引入:

1.回憶集合的概念

2.集合中元素有那些性質(zhì)?

3.空集、有限集和無限集的概念

二、講述新課:

集合的表示方法

1、大寫的字母表示集合

2、列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)表示集合的方法. 例如,24所有正約數(shù)構(gòu)成的集合可以表示為{1,2,3,4,6,8,12,24} 注:(1)大括號不能缺失.

(2)有些集合種元素個數(shù)較多,元素又呈現(xiàn)出一定的規(guī)律,在不至于發(fā)生誤解的情況下,亦可如下表示:從1到100的所有整數(shù)組成的集合:{1,2,3,…,100}

自然數(shù)集n:{1,2,3,4,…,n,…}

(3)區(qū)分a與{a}:{a}表示一個集合,該集合只有一個元素.a表示這個集合的一個元素.

(4)用列舉法表示集合時不必考慮元素的前后次序.相同的元素不能出現(xiàn)兩次.

3、特征性質(zhì)描述法:

在集合i中,屬于集合a的任意元素x都具有性質(zhì)p(x),而不屬于集合a的元素

都不具有性質(zhì)p(x),則性質(zhì)p(x)叫做集合a的一個特征性質(zhì),于是集合a可以表示如下:

{x∈i| p(x) }

例如,不等式x2?3x?2的解集可以表示為:{x?r|x2?3x?2}或{x|x2?3x?2},

所有直角三角形的集合可以表示為:{x|x是直角三角形}

注:(1)在不致混淆的情況下,也可以寫成:{直角三角形};{大于104的實數(shù)}

(2)注意區(qū)別:實數(shù)集,{實數(shù)集}.

4、文氏圖:用一條封閉的曲線的內(nèi)部來表示一個集合.

例1:集合{(x,y)|y?x2?1}與集合{y|y?x2?1}是同一個集合嗎?

答:不是.

集合{(x,y)|y?x2?1}是點集,集合{y|y?x2?1}={y|y?1} 是數(shù)集。

例2:(教材第7頁例1)

例3:(教材第7頁例2)

課堂練習(xí):

(1) 教材第8頁練習(xí)a、b

(2) 習(xí)題1-1a:1,

小結(jié):

本節(jié)課學(xué)習(xí)了集合的表示方法(字母表示、列舉法、描述法、文氏圖共4種) 課后作業(yè):p10 1,2

第五篇:高一數(shù)學(xué)教案:1.1集合-集合的概念(2).doc

課題:1.1集合-集合的概念(2)

教學(xué)目的:(1)進一步理解集合的有關(guān)概念,熟記常用數(shù)集的概念及記法

(2)使學(xué)生初步了解有限集、無限集、空集的意義

(3)會運用集合的兩種常用表示方法教學(xué)重點:集合的表示方法

教學(xué)難點:運用集合的列舉法與描述法,正確表示一些簡單的集合

授課類型:新授課

課時安排:1課時

教具:多媒體、實物投影儀

教學(xué)過程:

一、復(fù)習(xí)引入:上節(jié)所學(xué)集合的有關(guān)概念

1、集合的概念

(1(22、常用數(shù)集及記法

(1n,n??0,1,2,??

(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0n或n+,n*??1,2,3,??*

?1,?2,?? (3z , z??0,

?(4q , q??所有整數(shù)與分?jǐn)?shù)

(5r,r??數(shù)軸上所有點所對應(yīng)的數(shù)?

3、元素對于集合的隸屬關(guān)系

(1)屬于:如果a是集合a的元素,就說a屬于a,記作a∈a

(2)不屬于:如果a不是集合a的元素,就說a不屬于a,記作a?a

4、集合中元素的特性

(1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個元素或者在這個集合里, (2(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗觯?/p>

5、(1)集合通常用大寫的拉丁字母表示,如a、b、c、p、q??

元素通常用小寫的拉丁字母表示,如a、b、c、p、q??

(2)“∈”的開口方向,不能把a∈a

二、講解新課:(二)集合的表示方法

1例如,由方程x2?1?0的所有解組成的集合,可以表示為{-1,1}

注:(1)有些集合亦可如下表示:

從51到100的所有整數(shù)組成的集合:{51,52,53,?,100}

所有正奇數(shù)組成的集合:{1,3,5,7,?}

(2)a與{a}不同:a表示一個元素,{a}表示一個集合,該集合只 2、描述法:用確定的條件表示某些對象是否屬于這個集合,并把這個條 格式:{x∈a| p(x)}

含義:在集合a中滿足條件p(x)的x例如,不等式x?3?2的解集可以表示為:{x?r|x?3?2}或 {x|x?3?2所有直角三角形的集合可以表示為:{x|x是直角三角形}

注:(1如:{直角三角形};{大于10的實數(shù)}

(2)錯誤表示法:{實數(shù)集};{全體實數(shù)}

34

4、何時用列舉法?何時用描述法?

⑴有些集合的公共屬性不明顯,難以概括,不便用描述法表示,只能用列

{x2,3x?2,5y3?x,x2?y2}

⑵有些集合的元素不能無遺漏地一一列舉出來,或者不便于、不需要一一

如:集合{(x,y)|y?x2?1};集合{1000以內(nèi)的質(zhì)數(shù)}

例 集合{(x,y)|y?x2?1}與集合{y|y?x2?1}是同一個集合嗎?

答:{(x,y)|y?x2?1}是拋物線y?x2?1上所有的點構(gòu)成的集合,集合{y|y?x2?1}={y|y?1} 是函數(shù)y?x2?1(三) 有限集與無限集

1、 有2、 無3、 空φ,如:{x?r|x2?1?0}

三、練習(xí)題:

1、用描述法表示下列集合

①{1,4,7,10,13}{x|x?3n?2,n?n且n?5}

②{-2,-4,-6,-8,-10}{x|x??2n,n?n且n?5}

2、用列舉法表示下列集合

①{x∈n|x是15的約數(shù)}{1,3,5,15}

②{(x,y)|x∈{1,2},y∈{1,2}}

{(1,1),(1,2),(2,1)(2,2)}

注:防止把{(1,2)}寫成{1,2}或{x=1,y=2}

?x?y?282③{(x,y)|?} {(,?)} 33?x?2y?4

④{x|x?(?1)n,n?n}{-1,1}

⑤{(x,y)|3x?2y?16,x?n,y?n}{(0,8)(2,5),(4,2)}

} ⑥{(x,y)|x,y分別是4的正整數(shù)約數(shù)

{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,

4)}

3、關(guān)于x的方程ax+b=0,當(dāng)a,b滿足條件____時,解集是有限集;當(dāng)a,b滿足條件_____

4、用描述法表示下列集合:(1) { 1, 5, 25, 125, 625 }=;

(2) { 0,±4312, ±, ±, ±, ??251017

四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:1.集合的有關(guān)概念:有限集、無限集、空集

.集合的表示方法:列舉法、描述法、文氏圖

五、課后作業(yè):

六、板書設(shè)計(略)

七、課后記:

來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。


集合教案(精選多篇)》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請保留原作者信息,謝謝!
鏈接地址:http://m.hmlawpc.com/gongwen/275813.html
相關(guān)文章